1701556517
1701556518
1701556519
现在,在你服用蓝色药片之前——哪种能治愈你,哪种能杀了你——你需要问的贝叶斯问题是:“在我的脸是蓝色的情况下,患蓝色疾病的概率是多少?”答案是,在40个脸色为蓝色的人中,15人都患上了蓝色疾病:15÷40=0.38,即38%。当你脸色为蓝色时,你患上绿色疾病的概率为25÷40=0.62,即62%。无论你的脸是什么颜色,最好都服用绿色药片,这是因为绿色疾病比蓝色疾病更常见。我们需要再一次平衡基础概率与症状。我们已经学会:不应该忽略基础概率。我们的大脑很难进行这样复杂的运算——四格表给了我们一种很直观的信息组织方式。这样的计算就是为什么医生通常会在拿到检查报告之前,让病人先服用抗生素的原因——抗生素常常能抵抗大多数疾病。
1701556520
1701556521
在我之前所提到的模糊症的例子中,201人测试结果为阳性,但其中只有1人真正患上了这种疾病。在许多实际医疗情境中,所有201人都会接受药物治疗。这涉及医疗实践中一个很重要的概念:需要治疗的人数,即在病愈之前,需要接受某种治疗的人的数量,例如药物、手术。在今天,201,这个需要接受治疗的人数的数字已经很常见了。在某些常规手术中,需要治疗的人数为48,而需要服用药物的人数可以超过300。
1701556522
1701556523
除去之前提到的蓝脸以及我们想象出来的各种疾病,那些与我们的道德直接矛盾的决定又是怎样呢?医生告诉你有种药有40%的概率能让你多活5年,你会怎样评估这种药?
1701556524
1701556525
当我们面临两难问题或者相同的清晰的概率时,有一种方法可以帮助我们思考决定:期待价值。某个事件的期待价值等于它的可能性乘以结果值。公司董事通常都会采用这种办法评估经济决策。假设某次聚会上,有人朝你走过来,邀请你一块玩游戏。他会抛掷硬币,如果硬币字朝上,你就可以得到1美元,那么你会为这个游戏付出多少钱?(假设你暂时不想玩这个游戏,但你也不是很介意这个游戏——你真正感兴趣的是赚钱)这个游戏的结果值是50分,硬币字朝上的概率为一半,你能得到的也就是一半。我们需要注意,期待价值通常不是你在任何一个游戏中实际得到的价值:你要么一分钱也得不到,要么你能得到一美元。但如果完成成千上万次游戏的话,你平局每局能得到50分。如果每局都支付少于50分,长远来说,你会赢得胜利。
1701556526
1701556527
期待价值也可以用于计算损失。假设你尝试算出到底是应该将车停在停车场还是冒着被开罚单的危险,将车停在下客区。假设停车场收费20美元,罚单是50美元。经验告诉你,你只有1/4的概率会被开罚单。这样,将车停在停车场的预期价值就是–20美元:很肯定,将车停在停车场的话,你一定会支付20美元(在这里,我用减号来表示损失)。
1701556528
1701556529
我们可以这样决定:
1701556530
1701556531
a.停在停车场:百分之百需要支付20美元。
1701556532
1701556533
b.不停在停车场:1/4的概率会损失50美元。
1701556534
1701556535
罚单的预期价值为:25%×–$50=–$12.5。现在,你一定讨厌罚单,想要避免被罚。你也许感觉自己今天运气不好,所以,你也许会支付20美元的停车费,以避免50美元的罚单。但更理性的方式是从更长远的角度来评估决定。很显然,在日常生活中,我们会面临上百个这样的抉择。最重要的是我们怎样算出平均数。这种特殊决定的期待价值是你能通过开罚单获得长期的回报:平均12.5美元的损失与20美元的损失。如果一年中每周都在这一特定街道停车一次,你将会有650美元的罚单或者1040美元的停车费的损失——这是一个巨大的差距。当然,某一天,你可以更新贝叶斯定理。如果某天你发现有交警在朝你停车的下客区走来,最好将车停在停车场。
1701556536
1701556537
期待价值也适用于非金钱结果。当两种医疗方案在疗效与长期帮助方面都差不多的时候,你需要根据它们所消耗的时间来确定究竟应该选择谁。
1701556538
1701556539
方案1:50%的可能性需要6周的时间才能康复,50%的可能性需要两周才能康复。
1701556540
1701556541
方案2:10%的可能性需要12周的时间才能康复,90%的可能性半周就能康复。
1701556542
1701556543
我们再一次用减号来表达损失的时间。方案1中的预期价值(以时间计算)为:
1701556544
1701556545
0.5×(–6周)+0.5×(–2周)=–3周+(–1周)=–4周
1701556546
1701556547
方案2中的预期价值为:
1701556548
1701556549
0.1×(–12周)+0.9×(–0.5周)=–1.2周+(–0.45周)=–1.65周
1701556550
1701556551
在忽略其他因素的情况下,你最好选择第二种方案,因为你只需要花费一周半的时间(平均);然而在方案1中,你需要花费4周时间(平均)。
1701556552
1701556553
当然,你不可能忽略所有其他因素:最大化地减少康复时间也许不是你唯一考虑的问题。如果你刚刚才订了前往非洲的机票,机票无法退订改签,你需要离开11周,那么你一定无法选择12周康复时间的治疗方案。那么方案1就会更好,因为最坏的情况是你只需要卧床休息6周。所以,预期价值对我们计算平均数是有好处的,但我们通常需要考虑最好与最坏的情况。最情有可原的理由是,某种方案会带来某种致命风险或严重残疾。预期价值还可以帮助我们组织信息。
1701556554
1701556555
不管怎样都有风险
1701556556
1701556557
在人生的某些时刻,你经常需要针对个人健康或者在乎的人做出某些重要的决定。某些决定会增加我们的身体与心理压力,严重削弱我们做出决定的能力,这样问题就变得更复杂了。如果你询问医生检查结果的准确性是多少,也许他也不知道。如果针对不同治疗方案做出研究,你会发现医生处理这些数据也很困难。医生在疾病诊断中是必不可少的,他们可以给出不同的治疗意见,可以治疗病人,可以跟踪治疗以确保治疗是有效的。然而,正如一位医学博士指出的那样,“医生掌握的关于疗效的知识多于风险的知识,这必然会影响决策的准确性”。此外,研究调查往往关注某种治疗是否有效,对副作用研究没什么兴趣;医生们学到的也往往是成功的治疗方案,而不是副作用——所以,对负面结果的调查是你需要做的事情,这是另一种类型的影子工作。
1701556558
1701556559
以心脏搭桥手术为例。美国每年都有50万人接受这种手术。有价值的证据是什么?随机医学试验告诉我们,接受过这种手术的病人大多没有得到任何实际生存价值。但外科医生都不相信这个说法,因为治疗方案中的逻辑性已经足以说服他们:“血管堵塞,搭一根管道,问题就解决了。”如果认为某种方案有效,他们会相信它真的有效,即使没有任何医疗证据。
1701556560
1701556561
血管成形手术在一年的时间内从0增加到10万例,没有任何医学试验——正如心脏搭桥手术一样,它最为人们所熟知的地方在于其中的逻辑性,但医学试验并没有显示任何生存益处。一些医生告诉他们的病人,血管成形手术能够让他们多活10年;但对于那些有长期冠心病的人,试验表明,这种手术只能将他们的寿命延长1天。
1701556562
1701556563
难道所有病人都傻吗?他们不傻,他们只是太脆弱。当医生说,“你已经患上某种致死的疾病,但我有有效的治疗方案”,我们会很自然地抓住这个机会。我们会问问题,但不会问太多——我们希望挽救自己的性命,愿意听医生的指令。试验证明,当我们感觉无助的时候,会倾向于关闭自己的决策系统。在专家给出建议之后,需要做出选择的病人通常会关闭控制独立决策系统的大脑区域,转而将决定权转交给专家。
1701556564
1701556565
此外,寿命长短并不是事件的全部,尽管这是心脏病专家向病人推荐搭桥手术和血管成形手术的方式。许多病人都指出,接受手术后,他们的生活质量大大提高了,他们做自己喜欢的事情的能力也提高了。他们的寿命也许并没有延长,但生活得更好了。这在许多医学选择中都是很重要的因素,也是我们不应该忽视的因素。不要只问医生有关疗效与死亡率的问题,也问问生活质量,问问可能产生的负面效果。事实上,比起寿命长短,许多人更看重生活的质量,他们可能更愿意做出不同的选择。
1701556566
[
上一页 ]
[ :1.701556517e+09 ]
[
下一页 ]