1701743394
1701743395
没有人能以纽康悖论中的准确率预测任意一种人类行动。然而,这一根本性缺陷让它很难应用于这个场合。科学界和哲学界共同接受一种观点:人类的身体(包括大脑在内)与宇宙中的其他物质遵循相同的物理定律。如果人类的行动是被决定的,那么我们必须承认预测人类行为是有可能的。
1701743396
1701743397
在我看来,纽康实验有可能实际执行。我提出的实验方法是一个诚实的欺骗,但是也许没有影响实验的基本要素。我们假定巫师是一个冒牌货,他用一种我们不了解的诡计获得了目前的业绩,这个诡计不需要(并且不能)违反实验的规定。情况很可能是这样的:巫师在深入研究之后发现,90%的普通大众一定会只拿箱子B,因此,他总是预测实验对象会只拿箱子B,而且他确实达到了宣称的90%准确率。
1701743398
1701743399
马丁·加德纳在1973年的某一期《科学美国人》上讨论了纽康悖论,随后加德纳报告说,读者给编辑部写信介绍自己的选择,其中只拿箱子B的人更多,只拿B与两个都拿的人的比例是2.5∶1。如果这些读者具有代表性,那么任何人都有能力做出准确率高于70%的预测,只要总是预言实验对象将只拿箱子B就可以了。当两个箱子对应的钱数分别是1 000美元和1 000 000美元时,临界值是50.05%,70%的准确率远远高于这个临界值。狡猾的巫师偶尔会预言实验对象两个箱子都拿,以这种方法迷惑一旁的监视者,即便如此,他的准确率依然是有保证的。
1701743400
1701743401
当然,必须保证实验对象不知道巫师采取这种“预测”方法。许多冒牌巫师已经获得了成功(这些巫师同样瞒过了他们的实验对象),我认为,某个吹牛高手有可能获得准确预言的历史记录,他可以组织一次纽康实验。
1701743402
1701743403
尽管如此,我们依然面对一个更复杂也更有趣的问题:与人类行动一样复杂的事件是否可以预测?人类有能力违抗预测。
1701743404
1701743406
两种预测
1701743407
1701743408
科学善于对某些事做出预测。例如,对于公元5000年的日食,我们可以准确而且比较简单地做出预测;但是今天早晨做出的天气预报,通常到中午就不准了。为什么会有这种差别呢?
1701743409
1701743410
显然,某些事比其他事更难预测。根源在于,存在着两种预测:一种预测利用模型或模拟实现,能够让我们创造出一种与预测对象本身同样复杂的研究模型;另一种预测相对比较简单,可以利用某种“捷径”完成预测。
1701743411
1701743412
今天以后的第100天是星期几?日历代表了模型化的预测方法。在日历上,每一个小方块代表未来的100天中的一天,向前数100天,就得到了答案。
1701743413
1701743414
解这个问题也有捷径。100除以7,得出余数。经过余数天后是星期几,100天后就是星期几。100除以7余2,如果今天是星期一,两天后是星期三。因此,今天以后的第100天也是星期三。
1701743415
1701743416
只要有可能,我们总是喜欢走捷径。如果你想知道今天以后的第100万天是星期几,怎么办呢?恐怕没有哪本日历覆盖这么多天。如果应用日历,你不得不亲自编一本日历,涵盖今后的几千年。如果走捷径,就可以避免这项繁复的工作。100万除以7,得出余数,这个过程不见得比100除以7麻烦。
1701743417
1701743418
遗憾的是,我们经常不得不诉诸模型,因为有些现象不允许通过捷径进行预测。我们找不到一种比现象本身更简单的方法或模型。
1701743419
1701743421
混沌
1701743422
1701743423
把一个玩具气球吹大但不吹破,然后松手。气球将沿着一条不可预测的轨迹在屋里飞动。如果你精确地测量了松手时气球的位置和膨胀程度,是否可以预测它的轨迹?很可能不行。无论你的测量多精确,精确度都是不够的。
1701743424
1701743425
确定气球和房间的初始状态需要大量信息,远比上面提到的要多。气压、温度、房间里的每一点周围的气流速度,这些数据都必须被掌握,因为气球与它穿过的空气产生相互作用。最后,气球有可能撞上墙壁或家具,所以关于房间里所有东西的精确信息都是必不可少的。
1701743426
1701743427
即便如此,信息数据还是不够。每次松开气球时,它都会到处乱窜,最后落在一个不同的点。预测的失败显而易见。这只气球并非遵循某种未知的物理法则。它的运动是由气压、重力和惯性决定的。既然我们可以预测千年以后的海王星轨道,我们怎么就对一只小小的气球无能为力呢?
1701743428
1701743429
答案是混沌。这是一个比较新的术语,指那些不可预测的确定性现象。科学的功能主要是预测。然而,我们周围遍布着不可预测的东西:一道闪电,香槟酒的喷射,洗一副扑克牌,河流的蜿蜒。我们有理由认为,混沌现象是自然的,而可预测的现象才是异常的。
1701743430
1701743431
“随机”现象和其他现象一样,受同样的物理法则约束。它们之所以不可预测,原因在于:在混沌现象中,初始状态的测量误差随时间推移呈指数增长。庞加莱已预见了混沌,他在1903年写道:
1701743432
1701743433
如果有一个很小的因素我们没有注意到,这个因素会导致一个我们不能忽视的重大效应,然后我们会说,这是随机发生的。如果我们完全掌握了自然法则和宇宙在初始时刻的状态,我们就可以准确地预言这个宇宙在后继时刻的状态。然而,即使自然法则已经全部向我们敞开,我们依然只能近似地了解初始状态。如果在这些条件下我们能够以同样的近似程度预测后继时刻的状态,这就是我们的全部目的,我们可以说,现象已经得到预测,符合同样的法则。但是这并不是总能实现的。有可能出现这种情况:初始条件中的一个微小的差别在最终现象中导致了一个非常大的差异。在前一阶段的一个微小误差导致后一阶段的巨大误差。此时,预测成为不可能的事,我们面对的是偶然性的现象。
1701743434
1701743435
任何测量都会有点误差。如果你的驾照显示,你身高6英尺1英寸,这并不是说这个数字是你的精确身高——测量值四舍五入到了最接近实际值的数;测身高用的标尺在上次校正之后有点变形了;在测量时你站得不太直;在上次测量以后你的身高稍微有点变化。对人体身高的测量很容易产生1%左右的误差,我们接受这个事实,但并不在乎。我们容忍这种测量误差,因为误差不会增长。但是在其他场合,一个微小的误差会增长到巨大的程度,最后,我们对于测量对象已经一无所知。
1701743436
1701743437
混沌原理隐藏在洗扑克牌的过程中。在打完一局牌之后,发牌人把所有牌收集在一起,开始洗牌。不可避免地,有些人会看到某些牌在一整副牌中的位置。一个人注意到最下面是两张黑桃,另一个人看见自己的上一手牌在最上面,那手牌是一个顺子。关于整副牌的构成,每个人都有一些了解,同时也有一些不确定性。洗牌的过程使得不确定性增加。
1701743438
1701743439
假定你的上一手牌是同花顺,红桃6、7、8、9、10,这五张牌的顺序按大小排好了。你看见发牌人在搜集牌时原封不动地把这5张牌放在一起。如果在发下一手牌以前不洗牌,你会得到关于其他玩家的牌的信息。比方说,你拿到一张红桃8,你可以推断出上家拿到了一张红桃7,而下家拿到了一张红桃9,等等。
1701743440
1701743441
平均而言,洗一次牌就会使得原先相邻的牌之间插入了一张牌。原先的6h—7h—8h—9h—10h这个序列就变成了6h—?—7h—?—8h—?—9h—?—10h,再洗一次牌就变成了6h—?—?—?—7h—?—?—?—8h—?—?—?—9h—?—?—?—10h。每洗一次牌,原来相邻的牌之间的距离增加了一倍。洗完两次牌以后,最初的同花顺的第一张和最后一张牌之间有15张牌,洗第三次牌时,这两张牌很可能被分到不同的两摞里。这样,这五张牌将彻底分散在整副牌里。
1701743442
1701743443
实际情况比以上描述复杂得多。显然,洗牌时没有人会严格地在每相邻两张牌的间隔里插进一张牌。[6]有时会在一个间隔插进两张而非一张;有时几张牌一起洗过去了,中间没插入别的牌。每洗一次牌,过程中的不确定性都增加了整体的不确定性。我们做一个实验:把黑桃A放到一副牌的最上面,然后洗几次牌,这张黑桃A在整副牌中的位置很快向下移动。(洗了几次以后黑桃A有可能保持在最上面,这取决于牌是怎么洗的。)如果整副牌的张数无穷多,则每洗一次牌,这张黑桃A与最顶端的牌之间的距离大约增加一倍,同时,关于这张牌的微小的不确定性也增加了一倍。在洗整副牌有限多次的情况下,一旦这张牌被洗到了整副牌的下面半摞中,下一次洗牌时它会被分到下面那一摞中,然后它就有可能出现在整副牌中的任何位置。在标准情况下,为了使这张牌无迹可寻,需要洗六到七次牌。
[
上一页 ]
[ :1.701743394e+09 ]
[
下一页 ]