打字猴:1.70174434e+09
1701744340
1701744341
1701744342
1701744343
1701744344
1701744345
1701744346
1701744347
1701744348
1701744349 因此,这就是两条规则结果一致的情况下,两条规则都能得出正确结果的概率。我们正好可以借用另一种表达方式。概率是有利事例占总事例的比例。除了以此比例来表示结果,我们还可以借用另一种比例——有利事件占不利事件的比例。后者可以被称为事件的“机会”(chance)。那么第一种推理规则的机会比为 ,第二种推理规则的机会比为 ;以及当它们结果一致时,都得到正确结果的机会比为 ,也就是 × ,等于双方都答对的机会值的乘积。
1701744350
1701744351
1701744352
1701744353 可以看出,机会可以取任何值,一个双方拥有平等机会(即 )的事件,其概率为 。一个机会为1的论点无法用来加强其他论点,因为根据乘法规则,用它乘以任何概率还是原来的概率。
1701744354
1701744355 概率和机会无疑都归属于“推论”,是相对于特定前提的。尽管如此,我们也可以说某事件概率的绝对值,它的意思是,就目前所知而言,综合所有与它相关的事态得出的它发生的可能性。从这个意义上说,某事件的机会与我们对其的信念程度有非常密切的关系。信念不仅仅是一种单纯的感觉,也有一种相信的感觉,所有的论据都表明这种感觉会随着机会的变化而变化。因此,任何一个随着机会变化的量,都可以用来度量信念的强度大小。在众多数量中,有一种尤为适当。当我们遇到很大的机会时,信念的感觉应该是非常强烈的。凡人永远无法获得绝对的肯定和无限的机会,而这无限的信念正好说明了这一点。随着机会的减少,信念的感觉也会减弱,直到达到机会为1的情况,它就会完全消失,而不是越来越倾向或远离原命题。当机会减少时,相反地,会滋生一种坚定的信念,即机会越少,信念越强。当机会几乎消失时(但完全消失这种情况不太可能发生),这种坚定的信念会趋于无限强。现在,我们有一个对所有情况都非常合适的数量,就是机会的“对数”。然而,还有另外一个因素必须考虑,就是我们的信念应与证据的分量成正比。从这个意义上说,如果有两个完全独立且势均力敌的论据,那它们应该产生一种两者强度之和的信念。现在,我们已经知道,两个独立并存的论点需要将各自的机会相乘得到结合的机会,因此,最能表达信念强度的数量应该是,在机会的结合要通过对部分的机会做乘法得到时,同样可以对这个数量做加法得到。而现在,对数是满足此条件的唯一量。有一个普遍的感觉定律叫“费希纳心理物理定律”,指的是任何感觉的强度都与对它产生外力的对数成正比。因此,信念的感觉应该为机会的对数,这种感觉指的是产生信念的一种事实状态表达。
1701744356
1701744357 当测量信念强度时,两个独立并存的观点组合的原则非常简单,即把各个正面论据的信念感总和减去各个反面论据的信念感总和,余下的就是最后我们应该有的信念感。这是人们常常采取的办法,名为“权衡”。
1701744358
1701744359 上述因素就是支持概念论的理据。其核心在于,任何与事实相关论据的结合概率,必须与我们对此事实应有的信念程度密切相关。这一点往往也能得到其他观点的佐证,表明该理论与其他方面的认识是相一致的。
1701744360
1701744361 但是,无论概率是大是小,表达的都必须是事实。因此,这是一件需要证据的事情。那么,让我们来思考一下对概率的信念是如何形成的。假设我们现在有一袋豆子,偷偷地随机抽取其中一颗放在反扣的杯子下。我们现在要对这颗豆子的颜色做一个合理的猜测,办法是每次从袋子中抽取一颗豆子察看,然后放回去并搅混。假设第一次抽到的是白豆子,第二次是黑豆子,我们就可以得出结论,这两种颜色都没有绝对的巨大优势,而且,杯子下的豆子似乎有一半的可能是黑色的。但是这个判断有可能在接下来的几次抽取中被改变。当我们抽取的10次中有4次、5次或6次都是白豆子,那么就比较能确信这个猜测的概率是平均的。当我们抽取的1000次中几乎有一半是白豆子,就更能确信这一点了。现在,我们可以很肯定地说,如果我们对每一次被抽取的豆子颜色进行下注,那么从长远来看,猜白色是没有问题的。我们想要获得的信心就是这个,但是希望是在抽两次的时候就获得,而不是在抽了1000次以后。所以,概率的全部意义在于给我们提供一个长期的保障,并且因为这种保障不仅仅基于机会的大小,也取决于判断的准确性,我们不应该对所有机会均等的事件抱有同样的信念。简而言之,要合理地表达我们的信念,至少要有两个数字,第一个数字基于推测的概率,第二个取决于基于概率的了解程度。[34] 确实,当我们对某事物了解得非常精确的时候,当我们已经从袋子中抽取许多次以后,这个表示概率的不确定性的数字可能就不再重要了,或者完全消失。然而,当我们对某事件的了解非常有限时,这个数字就可能比概率本身更重要。而当我们完全不了解时,这个数字就代表着一切。所以,如果说某个未知事件的机会是均等的,这没有任何意义(因为没有事实的表达没有任何意义),这时应该说现在的机会完全是模糊的,没有办法计算。因此我们认为,虽然概念论在某些情境下适用,但总体上是很不充分的。
1701744362
1701744363 假设我们从袋子中抽取的第一颗豆子为黑色,就会形成一个论据,即杯子下的豆子可能为黑色,无论这个概率有多小。如果第二颗豆子也是黑的,这就是另一个独立论据,且加强了前一论据的可信度。如果前20颗豆子都是黑色,那我们对杯子下豆子为黑色的信心就会大大加强。但如果第21颗豆子为白色,然后我们继续抽取,最后发现抽到了1010次黑豆子和990次白豆子,那我们应该得出的结论是,前20次都抽到黑豆子这一事件是一个很大的偶然,事实上白豆与黑豆的比例是相当的,并且被藏起来的豆子为黑色的可能性也是均等的。但是根据“权衡”原则,由于每一次抽到黑豆或白豆都是一个独立论据,虽然有这么多对于“被藏起来的豆子为黑色”这一判断的有利论据和不利论据,但多出来的20颗黑豆产生的信念程度应当与抽取总数无关。
1701744364
1701744365
1701744366 在观念论观点中,这种完全的无知状态——判断不应倾向或偏离假说——会用 的概率来表示。[35]
1701744367
1701744368 不过,如果我们假设我们现在完全不知道土星居民的头发颜色,我们拿一张渐变颜色表,它包含了所有可能的颜色,任意相邻两种颜色之间的差别是无法用肉眼识别的。现在划出一个封闭的区域,试问:根据概念论的原则,土星居民的发色属于这个区域的机会有多少?我们给出的答案不可能是“完全无法确定”,因为我们一定是怀着某种信念的;而事实上,持概念论观点的人也是不承认不确定的概率的。这个问题没有确定性,答案其实在0和1之间。这里没有给定的数值,所以数字必须由概率本身的性质决定,而不是由数据计算得出。因此,答案只能是一半,因为这个判断不能倾向或偏离假设本身。这个区域的机会和任意别的区域的机会一样,并且如果有第三个区域包含了这两个区域,情况也是一样的。否则,如果两个小区域的概率各为一半,那么包含两者的大区域的概率就至少为1了,这是荒谬的。
1701744369
1701744370
1701744371
1701744372 所有的推理可分为两种:①解释性推理,也叫演绎法或分析法;②扩充性推理,也叫综合法或归纳法(不很确切)。在解释性推理中,首先在前提中规定了某些事实。这些事实在每一种情况下都涵盖无尽的内容,但它们常常可以通过一些规律性的方式总结在一个简单的命题中。因此,在命题“苏格拉底是一个人”中,意味着(没有其他可能性)他一生中的每时每刻(或者你可以说,在他一生中的大部分时间)是一个人。他不可能有一瞬间是一棵树或一只狗;他没有流入水中,或一次出现在两个地方;你不可能像透过一张光学图像一样,把你的手指透过他的身体等。现在,我们有了一些事实,虽然我们得出这些规定时并没有把它整理成命题的目的,但是我们或许就能在其中发现某种规定;这样我们就可以将其部分或全部形成一个新的命题。如果不提出命题,它便可能被忽略。而这一命题就是分析性推理的结论。这些都属于数学论证方法。但综合性推理与之截然不同。在这种推理情况下,结论中总结出的事实并没有在前提中阐述出来。得出的事实也各不相同,比如人们若有m次看到了潮汐上涨,就会得出结论,下一次潮汐会上涨。这些是增加我们常识的唯一推论,当然其他的推论也可能有用。
1701744373
1701744374 在任何可能的问题中,我们给出了某些事件出现的相对频率,我们认为在这些事实中,就隐藏着另一个事件出现的相对频率。解法前面已经讲过了。因此,这只是解释性推理,而非综合性推理。综合性推理的结论是要超出给定前提的范围的。因此,要想通过这种方法来发现综合性推理中的概率是缘木求鱼。
1701744375
1701744376 大多数关于概率的论文都含有一个不同寻常的原则。例如,如果一个居住在地中海沿岸、从未听说过潮汐的原始人来到了比斯开湾,看到潮汐上涨m次,他就可以知道潮汐上涨的概率等于:
1701744377
1701744378
1701744379
1701744380
1701744381 凯特勒在他的一本著作中强调了这一点,并将其作为归纳推理理论的基础。
1701744382
1701744383
1701744384
1701744385
1701744386
1701744387
1701744388
1701744389
[ 上一页 ]  [ :1.70174434e+09 ]  [ 下一页 ]