1701883263
如若跟大词相联系的前提(无论是肯定还是否定)是全称的,与小词相联系的前提是否定的、特称的,那么,三段论便不能成立,无论小前提是不定的还是特称的;例如,如若A属于所有B,B不属于某个C或者并非所有的C;如若中词不属于某个小词,那么大词既可与所有小词相结合,也可不相结合。让我们确定动物——人——白色的这组词项,然后,把“天鹅”和“雪”作为“人”不能以其为谓项的白色东西的例子。这样,“动物”可表述所有的“天鹅”,但不能表述任何“雪”,因而三段论不能成立。再者,让A不属于所有B,B不属于某个C,把词项换成无生命的——人——白色的,把“天鹅”和“雪”作为“人”不能作其谓项的白色东西的例子。这样,“无生命的”可以表述所有的“雪”,却不能表述任何“天鹅”。
1701883264
1701883265
因为“B不属于某个C”这一陈述是不定的,而且无论B不属于任何C还是不属于所有C,它都是真实的,因为我们选择了这样的词项,让B不属于任何C,所以,三段论便不能产生(这已经在上面说过了[15])。十分明显,当词项之间处于这样一种联系时,三段论便不能成立。否则,用这些词项就能构成一个三段论了。如果全称前提被设定为是否定的,也可以作出同样的证明。
1701883266
1701883267
如果两个前提都是特称的,并且它们都是肯定的,或者都是否定的;或者一个肯定,一个否定;或者一个前提不确定,另一个确定;或者两个前提都不确定。在上述情况下,三段论都不能成立。可用来说明它们的词项是:动物——白色的——马;动物——白色的——石头。
1701883268
1701883269
从上面所说的内容可以清楚地看到,如若在这个格中的三段论有一个特称的结论,那么词项之间必定具有我们所描述的那种联系。如若它们以别的方式发生关系,那么在任何情况下,三段论都不能成立。同样清楚的是,在这个格中,一切三段论都是完善的(因为它们都是通过原来设定的前提而完成的),各种命题都可以用这个格来证明,因为它既能证明全称的又能证明特称的结论,无论它们是肯定的还是否定的。我把这一个格称作第一格,或初始格。
1701883270
1701883271
【5】如果相同的词项属于一个主项的全部,而不属于另一个主项的任何部分,或者属于两个主项的全部,或者不属于两个主项的任何部分,我就把这个格叫做第二格。在这个格中,中词即是表述两个主项的那个词项;端词即是被中词所表述的主项;大词是与中词较接近的词项;小词是与中词距离较远的词项;中词被置于端词之外,而且位于前面。
1701883272
1701883273
在这个格中,无论词项如何排列,都不可能产生完善的三段论,但却能形成可能[16]的三段论,无论词项间的关系是全称的,还是非全称的。如果它们是全称的,当中词属于一个主项的全体,而不属于另一个主项的任何部分时,无论哪个主项被表述,三段论都可以成立。但在其他情况下则不然。让M不表述所有N,但却表述所有O。由于否定前提可以换位,所以N也不属于任何M。但根据设定,M属于任何O,因而N也不属于任何O(这已经在上面证明了[17])。再者,如果M属于所有N,但不属于任何O,那么N也不属于任何O。因为如果M不属于任何O,O也不属于任何M。然而根据设定,M属于所有N,所以O也不属于所有N。我们再次得到了第一格。由于否定前提是可以换位的,则N也不属于任何O。这样,它就与上面的三段论一样。运用归谬法[18]也能证明这些结果。
1701883274
1701883275
因此,很明显,当词项之间具有这样的关系时,我们就具有三段论,但不是一个完善的三段论。因为除了原有前提而外,还需要其他因素,才能推出必然的结论。
1701883276
1701883277
但是,如果M表述所有N和所有O,则三段论不能成立。可说明端词间肯定联系的词项例证是实体——动物——人;可说明端词间否定联系的词项例证是实体——动物——数。实体是中词。如果M既不表述N,也不表述所有O,那么三段论也不能成立。可以说明端词间肯定联系的词项例证是线——动物——人;可以说明端词间否定联系的词项例证是线——动物——石头。
1701883278
1701883279
可见,如果端词之间具有全称联系的三段论能成立,那么词项之间的关系必定如同我们在一开始所陈述的那样[19];如果它们以其他方式联系,那就得不到必然的结论。
1701883280
1701883281
如果中词与一个端词具有全称联系,当它与大词有全称联系(或者是肯定的,或者是否定的),与小词处于与全称关系相对立的特称联系时(我所谓的“与……相对立”,意思是说,如果全称联系是否定的,那么特称联系是肯定的;反之亦然),那么三段论的结论就必然是特称否定的。例如,如果M不属于任何N,但属于某个O,那么必然可以得出,N不属于某个O。因为否定陈述可以换位,所以N也不属于任何M。但根据设定,M属于某个O,所以N不属于某个O。这个结论是通过第一格推得的[20]。再者,如果M属于所有N,但不属于某个O,那么必然可以得出,N不属于某个O。因为如果属于一切O,M可表述所有N,那么M必定也属于一切O。但根据设定,M不属于某个O。如果M属于所有N,不属于任何O,那么三段论的结果将是N不属于任何O。证明的方法与前述相同。但是,如果M表述所有O,却不表述所有N,则三段论不能成立。可作为例子的词项如动物——实体——乌鸦;动物——白色的——乌鸦。如果M不表述任何O,却表述某个N,那么,三段论也不能成立。可以说明端词间肯定联系的词项例子是:动物——实体——单位;可以说明端词间否定联系的词项例子是:动物——实体——知识。
1701883282
1701883283
这样,我们就说明了,当全称前提与特称前提相对立时,在什么条件下,三段论成立,在什么条件下,三段论不成立。如果两个前提的形式相同,即都是肯定的或者都是否定的,那么三段论就不能成立。让我们首先设定它们都是否定的,让全称联系与大词相关,例如,M不属于所有N,而且M不属于某个O,那么N可能属于所有O,也可能不属于所有O。用以说明端词间否定联系的例证是:黑色的——雪——动物。我们找不到可以说明全称肯定联系的端词,因为M虽然不属于O的某些部分,但却属于O的另一些部分。如果N属于所有O,M不属于任何N,那么M不属于任何O。但根据设定,它属于某个O。所以我们不可能找到符合这些条件的词项,并且我们的证明必须从特称前提的不定性质中推论出。因为当M实际上不属于任何O时,说它不属于某个O,也是正确的。我们知道,当它不属于任何O时,三段论不成立。所以,很显然,在现在的情况下,三段论也不能成立。
1701883284
1701883285
再者,让我们设定两个前提都是肯定的,让全称联系的情况跟以前一样,例如,让M属于所有N并且属于某个O。N既可能属于所有O,也可能不属于任何O。可以说明端词间否定联系的词项例子是:白色的——天鹅——石头;可以说明端词间肯定联系的词项例证,我们找不到。原因与上述相同:我们的证明必须从特称前提的不定性质中推出。
1701883286
1701883287
如果全称联系与小词相关,即是说,M不属于任何O,不属于某个N,那么N既可能属于所有O,也可能不属于任何O。可以说明端词间肯定联系的词项例证是:白色的——动物——乌鸦;可以说明端词间否定联系的词项例子是:白色的——石头——乌鸦。如果两个前提都是肯定的,那么,可以说明端词间否定联系的词项例证是:白色的——动物——雪;可以说明端词间肯定联系的词项例子是:白色的——动物——天鹅。
1701883288
1701883289
所以,很明显,当前提在形式上相同,并且其中一个是全称的,另一个是特称的时,三段论在任何情况下都不能成立。如果中词属于或不属于每个主项的部分;或者属于一个主项的部分,不属于另一个主项的部分;或者不属于每个主项的全部;或者与它们的联系不定,在上述情况下,三段论都不能成立。以白色的——动物——人,白色的——动物——无生物这些词项为例;可以说明这些情况。
1701883290
1701883291
综上所述,可以明显看到,如果词项之间的联系如同我们所描述的那样[21],那么,三段论必然可以产生。如果三段论成立,那么,词项之间必定具有这样的联系。同样清楚的是,在这个格中,所有的三段论都是不完善的(因为它们都是通过断定某些另外的前提而完成的,而这些另外的前提既不是必然隐含在词项中,也不是被设定的。例如,当我们用归谬法证明我们的结论时)。通过这个格,我们不能获得肯定的结论。一切结论,无论是全称还是特称,都是否定的。
1701883292
1701883293
【6】如果一个词项属于一个主项的全部,另一个词项不属于这同一主项的任何部分;或者两个词项都属于同一主项的全部;或者两个词项都不属于同一主项的任何部分;那么,我把这个格称作第三格。在这个格中,中词即是两个端词都作其谓项的那个词项;端词即是指谓项;大词即是离中词较远的那个词项;小词即是离中词较近的那个词项。中词的位置处于两个端词之外,并且在最后。
1701883294
1701883295
在这个格中,我们也得不到一个完善的三段论。但无论端词与中词的关系是全称的还是非全称的,三段论是可能成立的。如果它们的关系是全称的,当P和R属于所有S时,P必定属于有些R。因为肯定前提是可以转换的,S属于有些R,并且P属于所有S,S属于有些R,所以P必定属于有些R。我们通过第一格得到了这个三段论[22]这也可以用归谬法和论述予以证明。当两个词项都属于所有S时,如果我们从S类中选择某个事物,譬如说,N,则P和R都能属于它。所以P属于有些R。
1701883296
1701883297
如果R属于所有S,P不属于任何S,则三段论的结果必定是P不属于有些R。证明方法与上述相同,因为R、S可以转换[23]。跟上面的例证一样,这结果也可以通过归谬法得到证明。
1701883298
1701883299
如果R不属于任何S,P属于所有S,则三段论不能成立。可说明端词间肯定联系的词项是:动物——马——人;可说明端词间否定联系的词项是:动物——无生物——人。如果两个端词都不表述任何S,三段论也不能成立。可说明端词间肯定联系的词项是:动物——马——无生物,可说明端词间否定联系的词项是:人——马——无生物。“无生物”是中词。
1701883300
1701883301
因此,在这个格中,当词项间具有全称联系时,三段论在什么条件下能成立,在什么情况下不能成立,我们就很清楚了。当两个前提都是肯定的时,三段论就能成立,其结论是,一个端词属于另一个端词的部分。当两个前提都是否定的时,三段论便不能成立。当一个前提为肯定,另一个前提为否定时,如果大前提是否定,小前提是肯定,则三段论能成立。其结论是,一个端词不属于另一个端词的部分;如果相反,大前提是肯定,小前提是否定,则三段论不能成立。
1701883302
1701883303
但是,如果在两个端词中,一个与中词具有全称联系,另一个与中词具有特称联系,如果前提同为肯定,则无论哪个前提是全称的,三段论都必定成立。如果R属于所有S,P属于某些S,则P必定属于有些R;由于肯定前提是可以转换的,S属于某些P,由于R属于所有S,S属于某个P,R也属于某个P,所以,P也属于某个R。再者,如果R属于某些S,P属于所有S,则P必定属于某个R。证明的方法与以前相同。也可以根据归谬法以及论述来证明它,就像前面的例子一样。
1701883304
1701883305
如果两个前提一个是肯定的,一个是否定的,并且肯定前提是全称的,那么,当小前提是肯定的时,则三段论能成立。如果R属于所有S,P不属于某个S,那么P必定不属于某个R(因为如果它属于所有R,R属于所有S,则P也属于所有S;但根据设定,它不属于任何S。如果我们选取某些P所不属于的S作例子,那么,这一结论不用归纳法也能得到证明)。但如果大前提是肯定的,则三段论不能成立;例如,如果P属于所有S,R不属于某些S。可说明端词间全称肯定联系的词项是:有生物——人——动物;但我们找不到可以说明全称否定联系的词项。因为R虽然不属于某个S,却又属于另一些S。如果P属于所有S,R属于有些S,那么P就属于有些R。但根据设定[24],它不属于任何R。我们必须像理解以前的例证那样来理解这种情况[25]。因为“一个词项不属于另一个”这一论述是不定的,所以说“不属于任何的也不属于有些”是真实的。但是,当R不属于任何S时,三段论不能成立[26]。所以,很显然,在这种情况下,三段论不能成立。
1701883306
1701883307
但是,如果否定词项是全称的,当大前提是否定,小前提是肯定时,三段论就能成立。如果P不属于任何S,R属于某个S,P也不属于有些R。因为通过将前提RS转换,我们就可以再次得到第一格[27]。但当小前提是否定时,则三段论不能成立。可以说明端词间肯定联系的词项是:动物——人——野蛮的;可以说明端词间否定联系的词项是:动物——知识——野蛮的。在这两个例子中,中词都是“野蛮的”。
1701883308
1701883309
如果两个前提都被设定为是否定的,并且一个是全称的、一个是特称的时,三段论亦不能成立。当小词与中词具有全称关系时,可用作例子的词项是:动物——知识——野蛮的、动物——人——野蛮的。如果大词与中词有全称关系时,可以说明端词间联系是否定的词项是:乌鸦——雪——白色的;但我们找不到可以说明端词间具有肯定联系的词项。因为R尽管不属于某个S,却又属于另一些S(如果P属于所有R,R属于有些S,P也属于某个S;但根据设定,它不属于任何S)。证明必须从特称前提的不定性质中推得[28]。
1701883310
1701883311
如果两个端词都属于或不属于中词的部分;或者一个属于中词的某个部分,另一个不属于;或者一个属于某个部分,另一个不属于任何部分;或者它们与中词的联系不定;——在所有这些情况下,三段论都不能成立。动物——人——白色的;动物——无生物——白色的,这些词项可用来说明所有这些情况。
1701883312
[
上一页 ]
[ :1.701883263e+09 ]
[
下一页 ]