打字猴:1.701883563e+09
1701883563 我们也必须了解通常是伴随着主体的各种属性以及为主体所经常伴随的属性。因为关于“通常”的命题,是三段论从通常是真实的前提中推出的,要么从它们全部,要么从它们中的一部分,因为每个三段论的结论都与它原来的出发点相似。
1701883564
1701883565 再者,我们不能选择伴随着所有这些词项的属性,因为它们不能产生一个三段论。至于为什么,我们马上就会清楚[83]。
1701883566
1701883567 【28】当我们打算确立一个关于整个主体的命题时,必须研究我们正力图确立的谓项碰巧要断言的主项,以及我们需要确立其谓项的主项的伴随属性。因为如果存在着为这两类所共有的东西,则一个必定属于另一个。如果我们要确立的不是属于全体而只属于某个,我们必须考虑这两类词项所伴随的词项;因为如果存在着为这两类所共有的东西,则一个词项必定属于另一个词项的部分;如果要求一个词项不属于另一个词项的全体,我们必须考虑主项的伴随属性以及不可能属于谓项的属性。或者反过来说,我们必须考虑不能属于主项的属性以及谓项的伴随属性。因为如果在这两个系列中有任何词项是相同的,则谓项不可能属于主项;因为一个三段论有时通过第一格而产生,有时则通过中间格而产生。如果要求一个词项不属于另一个词项的部分,我们必须考虑为主体所伴随的属性以及不可能属于谓项的属性。因为如果这两类有共同的东西,那就必然可以推出,谓项不属于某一主项。
1701883568
1701883569 如果我们以下列方式表达它们,则上述内容会更加清楚些。让B表示A的伴随属性,C表示为A所伴随的属性,D表示不可能属于A的属性。再者,让F表示E的属性,G表示为E所伴随的属性,H表示不可能属于E的属性。那么,如果C有某些部分与F的某些部分相同,则A必然属于所有E;因为F属于所有E,而C属于所有A,所以,A属于所有E。如果C和G是相同的,A必定属于某个E。因为A是所有C的一个伴随属性,E是所有G的一个伴随属性。如果F和D是相同的,则根据复合三段论的前进式,A就不属于任何E;因为否定命题可以换位,F与D相同,所以A不属于任何F;但F属于所有E。再者,如果B和H是相同的,则A不属于任何E;B属于所有A,但不属于任何E;因为根据设定,B与H相同,并且我们确定H不属于E。如果D和G是相同的,则A不属于某些E。因为它不属于D,因而也不属于G。但G归属于E,所以A不属于某些E。如果B与G相同,则通过转换可获得一个三段论。因为E属于所有A,而B属于A,所以E属于B(已知B与G是相同的)。可是,并不必然可以推出A属于所有E,而只能推出它属于某个E,因为全称论述可换位成特称论述。
1701883570
1701883571 因而,很显然,在每个命题的证明中,我们必须考虑主项与谓项的上述联系;因为三段论都是通过它们决定的。除此而外,我们还必然考虑每个词项的伴随属性,以及属性所伴随的主要和普遍的联系。例如,对于E,我们必须考虑KF,而不只是单单考虑F。因为如果A属于KF,它既属于F也属于E。但如果它不是后者的一个伴随属性,它可能仍然是F的一个伴随属性。同样,我们必须思考为正在讨论中的词项所伴随的属性;因为如果它是那些主要的词项的一个伴随属性,那它也是归属于它们的词项的伴随属性;但如果它不是前者的一个伴随属性,它也可能仍然是后者的一个伴随属性。
1701883572
1701883573 很清楚,我们的研究是通过三个词项和两个前提而进行的。而所有三段论都是通过已经论述过的三个格而产生的。因为已经证明,当C类事物中的一个被认为与F类事物中的一个相等同时,A属于所有E。它们是中词。端词则是A和E。这样,第一格就产生了。如果设定C和G是等同的,则A属于某些E。这是最后格,因为G变成了中词。当D和F相等同时,A不属于E。这样,我们就既有第一格又有中间格;因为A不属于任何F(否定命题可以换位),F属于所有E。这就得到了第一格;因为D不属于任何A,但属于所有E,所以获得中间格。当D和G等同时,A不属于某个E。这是最后格,因为A不属于任何G,E属于所有G。
1701883574
1701883575 可见,所有三段论都是通过已经论述过的格而产生的。我们一定不要选择所有词项的伴随属性。因为没有三段论从它们之中产生。可以从伴随属性中确立一个命题的方法是不存在的。而另一方面,通过一个共同的伴随属性去反驳是不可能的,因为它属于一个词项而不属于另一个词项。
1701883576
1701883577 其他借助选择而进行的研究方法对产生三段论显然是无用的。例如,如果两个词项的伴随属性相等同;或者,如果为A所伴随的属性与不可能属于E的属性相等同;再者,如果既不能属于A也不能属于E的属性相等同;因为根据它们,三段论不能产生。如果伴随属性,即B和F是等同的,则中间格就产生了,并且两个前提都是肯定的;如果A的前项与不可能属于E的属性(分别是C和H)是等同的,则第一格就产生了,并且小前提是否定的;如果既不能属于A也不能属于E的属性(即D和H)是等同的,两个前提都是否定的,则要么在第一格中,要么在中间格中,在这些情况下,根本不可能有任何三段论。
1701883578
1701883579 可见,我们所必然了解的是在我们所探索的词项中相同的,而不是不同的或相反的。首先,因为我们研究的目的是要发现中词,中词在每个前提中必须是相同的,而不是不同的东西。其次,即使在有些例子中一个三段论碰巧能从所设定的相反属性以及不能属于同一主体的各种属性中推出,它们也可还原为我们已经论述过的类型。例如,如果B和F是相反的或不能属于同一主体。因为如果我们设定了这些词项,就会有一个三段论。结论是,A不属于任何E。但结论不是从原来的词项中推出的,而是从上面所论述的类型中推出的[84]。因为B属于所有A,但不属于任何E,所以B必定与某些H相同。再者,如果B和G不可能属于同一对象,那么就会有一个三段论。结论是,A不属于某些E。在这种情况中,中间格也能产生。因为B属于所有A,却不属于某些E,所以,B必定与某些H相同。因为“B和G不可能属于同一主项”这一陈述与“B与某些H是相同的”这一陈述是等值的。我们已经说明[85],H代表一切不能属于E的属性。
1701883580
1701883581 可见,没有三段论能直接从上面的研究方法中产生。但如果B和F是相反的,B必定与某些H相同,则三段论就能通过这获得。由此可以推出,以刚才所论述的方式考虑问题的人没有看到某些B与某些H是等同的,所以他们去寻找必需方法以外的其他方法。
1701883582
1701883583 【29】采用归谬法的三段论与直接证明三段论的规则相同,因为它们也是通过两个端词的伴随属性和为它们所伴随的属性而产生的。在这两种类型中,研究方法也是相同的;直接证明的三段论亦可借助相同的词项根据归谬法而建立。反之亦然。例如,要证明A不属于任何E。设定它属于某些E,那么,由于B属于所有A,A属于某些E,则B也属于某些E。但根据假设,它不属于任何E。再者,A属于某些E是可以证明的;因为如果它不属于任何E,E属于所有G,则A不属于任何G。但根据假设,它属于所有G。其他命题亦相同。在一切借助两个端项的伴随属性及为属性所伴随的情况中,用归谬法进行证明总是可能的。
1701883584
1701883585 就每个问题而言,无论采取直接三段论还是归谬法,研究总是相同的;因为两种证明都是从同样的词项中得到结果的。例如,设定已经证明A不属于任何E。因为如果A属于某个E,则可以推出,B也属于某个E,而这是不可能的。如果断定B不属于任何E,但属于所有A,那么很显然,A不属于任何E。再者,如果A不属于任何E是通过直接三段论得到的结论,如果断定A属于某些E,则我们能用归谬法证明它不属于任何E。其他例子亦同样。在每种情况中,我们必须采用某些共同词项(与已经设定的不同),证明结论虚假的三段论与这些词项相联系。这样,当这个前提转换而其他仍然不变时,三段论将通过同样的词项而变成直接的。直接证明与归谬法的不同之处在于:在直接证明中,两个前提都被确定为是真的。而在归谬法中,有一个前提被确定为是假的。
1701883586
1701883587 在我们后面讨论归谬法时[86],这些论点会变得更加清楚。现在,让我们设定这些都已经很清楚。无论是要求直接证明一个结论还是用归谬法去证明一个结论,我们都必须注意相同的词项。但是,在其他假设性的三段论中,例如,涉及替换或性质联系时,研究所涉及的不是原来设定的词项而是被替换的词项,而研究的方法则与以前相同。但是,我们必须考虑和分析假设性三段论的不同类型。
1701883588
1701883589 每类命题都能按照上面所述的方式得到证明,但有些也用三段论的其他方式得到。例如,全称命题可以借助进一步的假设,通过适合于特称结论的方法而得到证明。因为设定C和G是等同的,E只属于G,则A属于所有E;再者,确定D和G是相等同的。E只为G所表述,则A不属于任何E。我们也显然必须以这种方式考虑问题。
1701883590
1701883591 同样的方法也适用于必然三段论和或然三段论;因为研究的过程是相同的。无论它是或然的还是实然的,三段论都通过同样排列的词项得到。但是,在或然命题中,我们必须
1701883592
1701883593 包括那些虽然不确实属于但也可能属于的词项,因为已经证明[87],或然三段论也是通过它们而获得的。其他指谓形式亦同样。
1701883594
1701883595 从上述分析中看得很清楚,不仅一切三段论都能通过这种方法得到,而且它们不能通过其他方式产生。已经证明,每个三段论都是通过已经论述过的一个格而产生的。在每个特殊情况中,除了通过词项的伴随属性和为词项所伴随的而外,它们不能以其他方式组合。因为前提是从它们之中构成的,中词是从它们之中发现的。因此,一个三段论不能通过其他词项产生。
1701883596
1701883597 【30】在所有情况下,无论是在哲学中还是在各类技术和研究中,方法都是相同的。我们必须寻求每个词项的属性和主体,尽可能地找得多一些,然后通过三个词项研究它们,以这种方式反驳,以那种方式证实。如果要寻求真理,则必须从以真实联系为根据而排列的词项出发;如果要寻找辩证的三段论,则必须从以意见为根据的前提出发。
1701883598
1701883599 三段论的本原或始点,它们有什么特点以及我们应当怎样寻求它们,现在都已经得到了一般性的说明。我们获得这样的结果,不是通过考虑所有可表述所讨论词项的东西,也不是通过考虑我们在证实或反驳一个命题,无论是证实或反驳这个命题的全部或部分,或者去设定其全体和某些,而是通过考虑有限数量的明确属性。我们必须选择跟每个特殊存在物有关的东西,例如,关于善或知识的。
1701883600
1701883601 每一门特殊科学所固有的本原为数众多。因此,把每门特殊科学的本原传达给我们,这是经验的任务。我的意思是说,例如,对天体的经验传达给我们有关天文学的知识(因为只有到现象被透彻地把握时,才能找到天文学的证明);其他技术和科学的情况亦相同。所以,如果我们把握了所讨论对象的属性,我们立即就能轻而易举地揭示证明。如果没有遗漏研究对象的任何真正属性,我们就能发现和证实一切可证明事物的证明,并排除一切在本性上就没有证明的事物。
1701883602
1701883603 上面是关于前提选择方法的粗略论述。我们已经在关于辩证法的论文[88]中,详细地研究过这一问题。
1701883604
1701883605 【31】不难看到,根据种而划分是上述方法的一小部分。划分好比是一种弱的三段论,因为它预定了所要证明的东西,并且总是推出比所讨论的属性更广泛的东西。首先,所有使用划分方法的人都忽略了这一点。他们力图使人们相信,对实体与是什么[89]也能作出证明。因而,他们不明白通过划分可以推出什么样的结论,也不清楚这一结论可以通过我们上面所论述过的方法而达到。在证明中,如果需要推论一个肯定的命题,那么三段论据以产生的中词总是从属于大词,而不是包括着它的全称。但划分则要求相反的程序,它把全称作为中词。设定A表示“动物”,B表示“有死的”,C表示“不朽的”,D表示“人”。“人”的定义是现在所要求揭示的。划分者断定,所有动物都要么是有死的,要么是不朽的,即是说,所有作为A的事物都要么是B,要么是C。他随后继续划分,人是动物,即以A表述D。所以,结论是,每个D都要么是B,要么是C。这样,人要么是有死的,要么是不朽的。但是,“人是一个有死的动物”,这并不是必然的推论,而是预期的,它正是应当用三段论加以证明之点。再者,设定A表示“有死的动物”,B表示“有足的”,C表示“无足的”,D表示“人”。他像以前一样断定,A要么归属于B,要么归属于C(因为每个有死的动物都要么是有足的,要么是无足的),以A表述D(因为已经断定,人是有死的动物),因而,人必定要么是有足动物,要么是无足动物。但是,他是一个有足动物,这也不是一个必然的推论,而是预期的。它又是应当通过三段论加以证明之点。这些人总是以这种方式划分。由此可以推出,他们总是把全称词项当作中词,把要被证明的主体及属差当作端词。最后,他们对人或者他们所考察的其他主题究竟是什么并没有搞清楚,更没有证明它是必然的。因为他们全都追求别的方法,完全没有顾及可以利用的大量证据的存在。
1701883606
1701883607 显然,运用这种方法不可能反驳一个命题,不可能得出关于偶性或特性的推论,不能得出关于种的推论。在事实不明确时,例如,正方形的对角线可否用边进行测量,如果某人设定每个长度要么可测量,要么不可测量,对角线是长度,则结论是,对角线要么可测量,要么不可测量;如果某人设定它不能测量,则他是在断定应当用三段论加以证明的事物。因而,证明是不可能的。因为按照这种方法,不可能有证明。设定A表示“可测量或不可测量”,B表示“长度”,C表示“对角线”。
1701883608
1701883609 因此,很显然,这种探索的方法不适合于研究,即使在它被认为是最适合的情况下,也是无用的。
1701883610
1701883611 证明由哪些因素、用什么方法才能产生,在每类问题中应考虑什么样的属性,这些,通过上面的论述就清楚了。
1701883612
[ 上一页 ]  [ :1.701883563e+09 ]  [ 下一页 ]