打字猴:1.702637576e+09
1702637576 我们常用P(单身)来指代“我们抽中的女性为单身的概率”。概率模型不只是对个别结果分配概率,我们还可以把个别结果的概率加起来,得到任何一组结果的概率。
1702637577
1702637578 表18-1 各球队赢得第47届超级碗冠军的概率
1702637579
1702637580
1702637581
1702637582
1702637583 知识普及 概率论与政治
1702637584
1702637585 1950年,苏联数学家格涅坚科写了一本《概率论》,畅销全球。在引言里,有一段神奇的话是:“我们注意到,整个概率论的发展表明,其概念和思想一直在唯物主义和唯心主义之间做着激烈斗争。”这里的唯物主义是马列主义的另一种说法。
1702637586
1702637587 概率模型
1702637588
1702637589 一个随机现象的概率模型可以描述所有可能的结果,以及任意一组结果的概率。我们有时把一组结果叫作一个“事件”(event)。
1702637590
1702637591 概率规则
1702637592
1702637593 上述案例中的概率是所有女性中各种婚姻状况的比例,所以它们会遵循比例的规则。以下是所有概率都应该遵循的基本规则:
1702637594
1702637595 • 任何概率都是介于0和1之间的数。所有比例都是介于0和1之间的数,所以所有概率也都是介于0和1之间的数。概率为0的事件永远不会发生,概率为1的事件在每次实验时都会发生,概率为0.5的事件长期下来有一半的时间会发生。
1702637596
1702637597 • 所有可能结果的概率加总起来应该是1。因为每次实验总会发生某个结果,所以所有可能结果的概率之和一定是1。
1702637598
1702637599 • 一个事件不会发生的概率等于1减去该事件的发生概率。如果某个事件发生的次数占所有实验次数的70%,那么它在另外30%的实验中就不会发生。一个事件的发生概率与该事件不会发生的概率,加总起来必定是100%或者1。
1702637600
1702637601 • 如果两个事件不会同时发生,那么这两个事件中肯定有一个会发生的概率是这两个事件各自的发生概率之和。如果一个事件的发生概率是40%,另一个事件的发生概率是25%,且这两个事件不可能同时发生,那么这两个事件中肯定有一个事件会发生的概率是65%,因为40%+25%=65%。
1702637602
1702637603 例1 年轻女性的婚姻状况
1702637604
1702637605 再来看年轻女性的各种婚姻状况的概率。4个概率中的每一个都是介于0和1之间的数。加总起来就是:
1702637606
1702637607 0.455+0.494+0.005+0.046=1
1702637608
1702637609 这个结果符合概率规则的第一条和第二条。个别结果的概率只要满足概率规则的第一条和第二条,就是合理的。也就是说,这样的概率是有意义的。此时,概率规则的第三条和第四条自然也成立。这里有一个应用概率规则第三条的例子:
1702637610
1702637611 根据概率规则第三条,我们抽到单身女性的概率为:
1702637612
1702637613 P(单身)=1-P(已婚)=1-0.494=0.506
1702637614
1702637615 这意味着,如果有49.4%的女性已婚,那么剩下的50.6%就是单身女性。概率规则第四条的意思是,你可以把三种单身状况的概率相加,得出女性单身的概率,就像我们前面算的那样,可以得出同样的结果。
1702637616
1702637617 例2 掷两个色子
1702637618
1702637619 掷两个色子是在赌场里输钱的一种很常见的方式。当我们掷出两个色子时,依序(第一个色子,第二个色子)记录朝上那一面的点数,会出现36种可能的结果。图18-1展示了这些结果,我们应该怎样分配这些结果的概率呢?
1702637620
1702637621
1702637622
1702637623
1702637624 图18-1 掷两个色子的36种可能的结果
1702637625
[ 上一页 ]  [ :1.702637576e+09 ]  [ 下一页 ]