1703565226
1703565227
1703565228
1703565229
图8-4 下注10次时的期望账户金额与下注规模的关系
1703565230
1703565231
进行一些简单的模拟,就可以充分了解如下几个特点:
1703565232
1703565233
·与其他下注比例相比,凯利比率通常能够得到较多的最终财富。
1703565234
1703565235
·以凯利比率下注时,资金的波动会变得异常大。
1703565236
1703565237
·实际下注比例高于凯利比率时的结果,会比低于凯利比率时的结果更差。
1703565238
1703565239
最后有一点需要特别强调。实际下注比例比凯利比率高得越多,波动率会变得越高,而收益会变得越低。这点可以从图8-5中看到。该图展示了分别使用50%凯利比率、凯利比率以及200%凯利比率进行下注时,资金曲线的可能情况。
1703565240
1703565241
1703565242
1703565243
1703565244
图8-5 以凯利比率的不同乘数进行交易时损益路径的相对波动率
1703565245
1703565246
现在,我们假设凯利策略已经足够诱人,我们可以用它来验证更真实的环境。这个环境更接近于我们在交易金融工具时可能遇到的情形。
1703565247
1703565248
为了应对赌局结果为连续值的情况,我们需要把交易的情景一般化。假设在交易中,一次赌局或者一次交易的结果服从某个特定的分布。这可能是一个交易员通常面对的情况:分布可以用历史数据来估计,也可以通过理论推导得到。现在,我们先假设这些交易的结果都是独立分布的。同样地,在每一期,我们的下注额为总财富的固定比例f,从而:
1703565249
1703565250
1703565251
1703565252
1703565253
其中随机变量Xn为第n个交易的结果,其损益为g(Xn)。
1703565254
1703565255
在连续n次交易后,账户金额变为:
1703565256
1703565257
1703565258
1703565259
1703565260
我们同样在公式两边取对数后可以得到:
1703565261
1703565262
1703565263
1703565264
1703565265
因此有:
1703565266
1703565267
1703565268
1703565269
1703565270
1703565271
1703565272
1703565273
其中,Φ(x)为描述交易结果的分布函数。
1703565274
1703565275
如果通过选取合适的账户比例来最大化期望对数财富,那么可以得出最优解所满足的公式为:
[
上一页 ]
[ :1.703565226e+09 ]
[
下一页 ]