打字猴:1.703866545e+09
1703866545
1703866546 这种方案也有一些问题。虽然矿机发热的效率和电取暖器差不多,但是它们本身比用天然气供暖的效率差很多。另外如果在夏天每个人都把矿机关闭(至少在北半球),那么比特币的全网算力将会伴随人类取暖需求而产生季节性变动。如果数据火炉方案真的推广开来,将会给比特币的共识机制带来很有有趣的影响。
1703866547
1703866548 矿机的所有权也不明确。如果买了比特币数据火炉用于取暖,你是否拥有挖矿所获得的收入呢?还是出售设备的公司获取这部分收入?大多数人对比特币挖矿完全不感兴趣——有可能永远没兴趣——所以由出售这些设备的公司来获取这部分挖矿收入更合理。这也就意味着取暖器会以略微亏损的价格出售。这样一来,一些有创造性的用户可能会在购买了这些取暖器之后,对设备进行改造以使得他们自己可以获取这部分挖矿收入。这可能会引发令人难堪的数据所有权管理之争。
1703866549
1703866550 将电力转换成现金
1703866551
1703866552 长远来看,比特币产生的另一个问题是:它可以最有效率地把电力转换成现金。想象一下,如果比特币ASIC矿机是一个很容易购买到的商品,并且主要的挖矿成本是电力,这便意味着,提供免费的或低成本的电力将会面临被滥用的风险。
1703866553
1703866554 在很多国家,政府都有用电补贴,特别是对工业用电进行补贴。这么做的原因是政府希望吸引工业投资留在本国。但是由于比特币提供了一种很好地把电力转换为现金的途径,这可能使得政府要重新考虑用电补贴的模式,以防它们补贴的电力全部被转换成了比特币。政府用电补贴的意图是,希望可以吸引那些对国家经济和人民就业有帮助的企业,但是补贴比特币挖矿也许并不能对这两点有所帮助。
1703866555
1703866556 更大的问题是全球有数以亿计的“免费”插座,分布在家、学校、酒店、机场以及办公大楼等。有人可能把挖矿设备接在这些地方挖矿,因为别人会为此支付电费。事实上,他们还可能会用过时的设备而压根不考虑升级,反正电费又不是他们支付。在全世界范围内监控这些用于比特币挖矿的“偷电”行为,是一个异常艰巨的任务。
1703866557
1703866558 [1]GH为gigahash,s为second,w为watt。——译者注
1703866559
1703866560 [2]截至本书翻译的时间,全网算力已经增长到了1 200PH/s。——译者注
1703866561
1703866562
1703866563
1703866564
1703866565 区块链技术驱动金融:数字货币与智能合约技术 [:1703863937]
1703866566 区块链技术驱动金融:数字货币与智能合约技术 5.4 矿池
1703866567
1703866568 设想一下作为单个矿工。假设你花了辛苦赚来的6 000美元买了一台全新闪亮的比特币矿机,你所期望的性能是平均每14个月会找到一个有效区块(在2015年早期一个区块的奖励价值在10 000美元)。
1703866569
1703866570 考虑到电费和其他运营成本,矿机的平均收入期望值应该是每个月400美元。如果可以确定每个月都能获得400美元,那么购买一台矿机是合理的投资。但是别忘了,挖矿是一个随机过程,你不知道什么时候可以发现下一个有效区块。在找到有效区块之前,什么都赚不到。
1703866571
1703866572 高方差
1703866573
1703866574 从矿工第一年能找到有效区块数的概率分布上看,这个分布差异是很大的,期望值(也就是第一年能找到区块的平均数)是相当的低。因为发现区块的比率是一个很低的固定值,并且这个值和你上次发现一个有效区块所花费的时间完全没有关系,因而总的发现区块的期望值是以柏松概率分布[1]。柏松分布是指,如果有N个独立事件,每个事件成功的概率是λ/N,当N接近于无限大的时候的成功概率分布。比特币挖矿中,尝试每一个临时随机数的行为实际上就是一种超小成功概率事件,所以即使对于小矿工来说,N的值也确实很大,这种近似类比是很合适的。
1703866575
1703866576 如果你期望每14个月找到一个有效区块(根据泊松分布可知λ=6/7个有效区块/每年),则有超过40%的概率在第一年你不会找到任何有效区块。对于个体矿工来说,这可能是灾难性的。你在一个矿机上花费了数千美元,并且支付了很多电费来运行,结果什么都没有获得。第一年能获取一个有效区块奖励的概率大概是36%,这也就意味着即使你的电费不高,你也就可能刚刚够支付电费。当然也有很小的概率可能会发现两个甚至更多的有效区块,这种情况下才有可能真的赚钱。详见图5.11。
1703866577
1703866578
1703866579
1703866580
1703866581 图5.11 挖矿成功的不确定性
1703866582
1703866583 注:假设全网哈希算力是不变的,平均发现一个区块的事件是14个月,对于一个小矿工来说这个成功概率的波动太大了。
1703866584
1703866585 这些数字只是一个近似估算,但主要的意思是,即使挖矿从期望值来说是合理的,也就是说,投资有足够的回报,但由于方差足够大以至于会有很大的概率什么都得不到。对于一个小矿工来说,这也就意味着挖矿就是一个赌博游戏。
1703866586
1703866587 矿池
1703866588
1703866589 历史上当小商人遇到大风险的时候,他们会自发组建一个互助保险公司来降低风险。比如,农夫会自发地聚在一起形成一个协议,如果任何一个个体农夫的谷仓不小心被烧掉了,那么其他的农夫可以把他们的利润拿来和这个不幸的农夫分享。那么对于比特币的小矿工是否也可以用类似的方式来降低风险呢?
1703866590
1703866591 矿池应运而生——矿池就是一个比特币矿工互相之间的保险。一组矿工可以形成一个矿池共同进行挖矿,并指定一个币基接受人。这个接受人就是矿池管理员。所以不管是谁最终发现了一个有效区块,矿池管理员将会收到这个区块的奖励,继而根据每个参与者所贡献的工作量按比例分配给所有矿池的参与者。当然,矿池管理员可能从中分一部分来作为矿池管理服务的收入。
1703866592
1703866593 假定每个人都信任这个矿池管理员,这样的分配安排可以极大地降低矿工成功寻找有效区块的概率波动。但是矿池管理员如何知道矿池里每个成员实际上到底贡献了多少工作量呢?同时他又是如何去分发收入的呢?很显然,矿池管理员不希望是靠每个成员的申明,因为他们可能会虚报自己的工作量。
1703866594
[ 上一页 ]  [ :1.703866545e+09 ]  [ 下一页 ]