打字猴:1.703866765e+09
1703866765
1703866766 黑名单与惩罚分叉攻击
1703866767
1703866768 如果一个矿工想把一个来自地址X的交易列入黑名单,换句话说,他想冻结从该地址出来的钱,让这些钱变得不可用。或许他想用这个办法来敲诈勒索一笔钱,或许他们之间有仇,还有可能是政府执法部门认为那些地址有问题,需要矿工的配合来冻结这些币。
1703866769
1703866770 传统观点都认为在比特币里这种黑名单没有办法有效施行。因为即使有些矿工会拒绝把交易放进区块链里,其他一些矿工可能会。如果你真的想把一笔交易列入黑名单,你可以尝试其他一些更加激烈的手段,比如,惩罚分叉(punitive forking),你可以宣布拒绝在包含来自该地址的交易的区块链上工作。如果你拥有大部分市场运算能力,那应该足以保证这个黑名单上的交易永远不会被公布。确实,在这种情况下,其他矿工很有可能不会再试图把这笔交易放入区块链里,因为这么做有可能使得他们自己的区块链被分叉,这会导致他们发现的区块被删除。
1703866771
1703866772 羽量级分叉
1703866773
1703866774 如果没有很大的算力,上述的几个分叉攻击在现实中都不太可能实现。如果你宣布拒绝接受包含某些特定交易的区块链,但这条链被网络上的其他矿工所接受并形成最长链的话,你就会发现自己被永远排除在共识链之外(这就是一个硬分叉),所有你做的挖矿工作统统浪费了。更加糟糕的是,黑名单上的交易仍然存在于最长的区块链上。
1703866775
1703866776 换句话说,考虑到还有其他矿工的存在,用惩罚分叉把特定交易放入黑名单的手段并不可靠。然而,有另一个更明智的方法可以做到这一点。与其一看到从地址X里出来的交易就宣布你会进行永久分叉,不如宣布你将会尝试分叉,但过一段时间你可能会放弃封杀的尝试。例如,你可以宣布:当k个区块证实了从这个地址出来的交易是正当的时候,你便会回到最长链。[1]
1703866777
1703866778 如果你在一个区块证实后便放弃,把那笔从地址X出来的交易成功封杀的概率是α2。原因是你必须要在其他矿工找到下一个区块之前找到连续两个区块,这样才能成功地丢弃那个包括地址X交易的区块。α2是你连续找到两个区块的概率。
1703866779
1703866780 α2这个概率看上去不是很好。就算你掌控了20%的全网算力,也只有4%的成功概率来封杀那笔你不希望出现在区块链上的交易。但这已经不错了,至少你还有可能说动其他矿工来加入你。只要你把你的计划公开了,其他矿工便会知道:如果他们胆敢把这个来自地址X的交易加入自己的区块,便有α2的可能会丧失自己已经发现的区块[被你的羽量级分叉攻击(feather forking)所消灭]。只要他们不是有很强的主观意愿把这个交易包括进来并且这个交易没有很高的交易费,他们可能更愿意规避那α2失掉过往挖矿奖励的风险,而不是获取那笔交易费。
1703866781
1703866782 这就演化为:其他挖矿者经过理性的思考,将决定加入你对X地址的封杀行动,这样你便可以成功地封杀X即使α<0.5。所以这个攻击要想成功,重点在于确保其他矿工相信你将会进行分叉攻击。
1703866783
1703866784 逐渐转移到用交易费来奖励挖矿
1703866785
1703866786 直到2015年,交易费还不是那么重要,因为区块奖励在矿工总收入里占比超过99%。但每4年,区块奖励就会被减半,最终区块奖励将会变得很低,低到交易费变成了矿工的主要收入来源。届时矿工会如何应对还属未知。他们会不会更加激进地要求实行最低交易费?矿工会不会联合起来逼迫比特币网络实行最低交易费制度?
1703866787
1703866788 未解的问题
1703866789
1703866790 总结来说,理论上矿工可以自由地选择挖矿的策略,但在实际中我们观察到的是大部分矿工都选择了默认策略来挖矿,虽然没有完整的模型可以证明默认策略(default strategy)就是最佳的。在本章中,我们讨论过几个特定案例,有大量算力的矿工有可能执行非默认策略来获取更大的收益。在挖矿策略上,实践是领先于理论的。在实践中,大多数矿工还是选择了默认策略,而且比特币运行得也很好。但是,从理论上,我们还无法论证这是一个稳定的机制。
1703866791
1703866792 默认策略能否在实际运行中一直保持有效,对于这一点我们也没有把握。比特币运行所依赖的现实条件也一直在改变。矿工们变得越来越中心化和专业化,整个系统的算力也越来越大。另外,从长期来看,比特币的奖励将从固定的挖矿奖励为主转变为交易费为主。我们真的不知道这将会如何演变,基于博弈理论对此进行预测也是一个非常有趣的前沿研究领域。
1703866793
1703866794 延伸阅读
1703866795
1703866796 关于挖矿硬件演变的一篇优秀论文:
1703866797
1703866798 Taylor, Michael Bedford. “Bitcoin and the Age of Bespoke Silicon.”In Proceedings of the 2013 International Conference on Compilers, Architectures and Synthesis for Embedded Systems .Washington,DC: IEEE Press, 2013.
1703866799
1703866800 关于比特币和加密货币的知识系统化文章,特别是第三部分关于稳定性:
1703866801
1703866802 Bonneau, Joseph, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A. Kroll, and Edward W.Felten. “Research Perspectives and Challenges for Bitcoin and Cryptocurrencies.” Presented at the 2015 IEEE Symposium on Security and Privacy, San Jase,CA,May 2015.
1703866803
1703866804 一份完整的分析2011年不同矿池激励机制的文章(有些信息有点过时,但是整体上还是值得参考):
1703866805
1703866806 Rosenfeld, Meni. “Analysis of Bitcoin Pooled Mining Reward Systems.”arXiv preprint arXiv:1112.4980(2011).
1703866807
1703866808 几篇研究挖矿策略的论文:
1703866809
1703866810 Eyal, Ittay, and Emin Gün Sirer.“Majority Is Not Enough: Bitcoin Mining Is Vulnerable,”In Financial Cryptography and Data Security . Berlin and Heidelberg:Springer,2014.
1703866811
1703866812 Kroll, Joshua A., Ian C. Davey, and Edward W. Felten.“The Economics of Bitcoin Mining, or Bitcoin in the Presence of Adversaries.”In Proceedings of the Workshop on the Economics of Information Security 2013. Berlin:Springer-Verlag,2013.
1703866813
1703866814 Eyal, Ittay. “The Miner’s Dilemma.” Presented at the 2015 IEEE Symposium on Security and Privacy, San Jose,CH,May 2015.
[ 上一页 ]  [ :1.703866765e+09 ]  [ 下一页 ]