打字猴:1.70386702e+09
1703867020
1703867021 唯一可靠的推断地址的方法,是通过和这些服务提供商发生一个实际的交易,交存比特币或者购买一个商品等。当你发送或者接收比特币的时候,你将会知道它们所拥有的地址之一,而且很快这个地址就会在区块链网络上公示(并且是在其中一个簇中的)。于是你可以为这个簇打上该服务商的身份标识标签。
1703867022
1703867023 这就是当时“一把比特币”的研究者(以及自那之后的其他人)追踪地址的做法,他们购买了不同的东西,加入了矿池,使用比特币交易所、钱包服务、博彩网站,以及其他一些和这些服务提供商产生比特币交易的行为,总计进行了344笔交易。
1703867024
1703867025 在图6.5中,我们又一次看到了图6.4的簇,只不过这一次贴上了附加的标签,我们有关门头沟公司和中本聪之骰的猜测是准确的,这些研究者同时辨识出一批其他的服务提供商,而如果不用交易的方式是很难标识它们的。
1703867026
1703867027 辨识个人
1703867028
1703867029 下一个问题是:我们是否可以对个人做同样的动作?也就是说,我们是否可以关联一些小的簇以辨识个人在真实生活中的身份?
1703867030
1703867031 直接交易。任何人和某个个人进行比特币交易的时候——不管是线上还是线下的商家、交易所,或者一个用比特币来分担晚餐账单的朋友——都可以通过这种直接交易,了解到他们的有效地址(至少一个)。
1703867032
1703867033
1703867034
1703867035
1703867036 图6.5 标签簇
1703867037
1703867038 注:通过和不同的比特币服务提供商进行交易,米克尔·约翰等人得以辨识并且标记这些簇在真实世界中的身份。
1703867039
1703867040 通过服务提供商。在使用比特币几个月甚至几年的时间里,大多数用户都会跟交易所或者其他中心化的服务提供商有一些交集,这些服务提供商都会直接询问用户的真实身份——通常法律要求它们必须这样做。这个话题我们将会在下一个章节讨论。如果执法部门想要去辨识某一个个人,就可以直接去找这些服务提供商,要求它们提供数据。
1703867041
1703867042 疏忽。人们通常都会在公共论坛里公示自己的比特币地址,一个通常的原因都是通过这种办法请求捐助。当有人这么做的时候,其实已经创建了一个他们自己的身份和他们某一个地址的关联,如果他们不使用我们将要探讨的匿名服务,所有的交易都将会面临被暴露的风险。
1703867043
1703867044 随着时间的推移,针对隐私的攻击会变得越来越有效率。历史记录表明,当越来越多的研究者去研究并开发出新的去匿名化的技术时,越来越多的数据会被公开,去匿名化的算法也由此随着时间的推移而不断得到改进。除此之外,会有越来越多的辅助信息可以帮助攻击者去识别这些地址簇,如果你非常关心隐私,那么这个问题就值得去担忧。
1703867045
1703867046 目前,我们探讨的去匿名化技术,都是基于对区块链网络上交易图谱进行的分析,这些方法被归纳为交易图谱分析(transaction graph analysis)。
1703867047
1703867048 网络层的去匿名化
1703867049
1703867050 用户被去匿名化,有很多种不依赖于交易图谱的方法。为了在区块链网络中公示一个交易,一种典型的方法就是广播这个交易到比特币点对点的网络中,在这个网络中,消息会被相应地发送,但不一定要在区块链网络里做永久记录。
1703867051
1703867052 在计算机网络术语中,区块链被归为应用层,而点对点的网络则是网络层。2011年,丹·卡明斯基(Dan Kaminsky)在黑帽技术大会(Black Hat)上首次提出了网络层去匿名化的概念。他注意到,当某个节点创建一个交易时,该节点就会和其他很多节点建立链接并且广播该笔交易。如果网络上足够多的节点串通起来(或者是被同一个攻击者所控制的),他们就能分辨出第一个广播交易的节点,并且可以因此推断,这个节点就是被创建这个交易的用户所拥有的。攻击者因此可以把这个交易关联到这个节点的IP地址,而IP地址已经非常接近于真实世界的个人身份了——有很多办法可以发现某个IP地址背后的用户身份。因此,网络层去匿名化就是隐私保护的一个非常严重的问题(参见图6.6)。
1703867053
1703867054
1703867055
1703867056
1703867057 图6.6 网络层去匿名化
1703867058
1703867059 注:正如丹·卡明斯基在2011年黑帽技术大会上的演讲中指出的,“第一个通知交易的节点很有可能就是交易源头”。当有多个节点配合并且对同一个交易源头进行识别的时候,这种方法的实际效果会更加明显。
1703867060
1703867061 幸运的是,这是一个通信匿名性的问题,已经有很多研究在探索这个课题。正如我们前面在6.1节中已经看到的,Tor这个使用很广泛的系统就是用来实现通信匿名性的。
1703867062
1703867063 在使用Tor系统为比特币实现网络层匿名化的解决方案的时候,有几个注意事项。首先,在Tor的协议和任何基于此协议的上层协议之间,可能会有一些复杂的交互,由此可能会导致新的破坏匿名化的方法。事实上,研究者已经发现,在使用Tor协议之上的比特币时,存在一些潜在的安全问题,使用这个方案的时候一定要非常小心。其次,可能有其他一些匿名通信的技术,会更适合比特币的使用。Tor的定位是针对那些低延迟的活动,比如网页浏览。在网页浏览的时候,你也不想坐在那里等半天,因此要取得低延迟,在匿名化方面可能要做出某些牺牲。相反,比特币则是一个高延迟的系统,因为比特币交易需要花时间来获得区块链上的确认。因此,至少在理论上我们可能更希望使用另外一种替代方案来实现匿名性,比如混币网络(Mix Net,参见本章6.3节)。但就目前来说,作为一个实际在运行的并且有广大用户基础的系统,Tor还是有一些优势的,而且这些用户的安全问题已经被集中地研究过。
1703867064
1703867065 到目前为止,我们已经看到,通过交易图谱分析的方法,不同的地址有可能被关联在一起,甚至有可能进一步被关联到真实世界的身份。我们也看到,基于点对点网络,交易或者地址可能会被关联到一个IP地址。对后一个问题,虽然我们现在还不能说可以完全解决,但至少解决起来相对容易。前一个问题就要麻烦很多,我们将在本章的后续部分,继续探讨如何去解决它。
1703867066
1703867067
1703867068
1703867069
[ 上一页 ]  [ :1.70386702e+09 ]  [ 下一页 ]