1703868030
1703868031
有效工作量证明是否应该是纯公益的,有一个有趣的经济学方面的争议。在经济学中,公益的意思是非排他性的,也就是说所有人都可以参与使用,并且是非竞争性的,对公益的其他用途不应该影响其本身的价值。一个经典的例子就是灯塔。
1703868032
1703868033
我们这里所讨论的案例,比如蛋白质折叠(protein folding)[2],就不是一个纯公益的项目,因为有一些公司(比如大的制药公司)可以从中获利。实质上,这些机构挖矿的成本会相对变低,因为它们可以获取其他人无法获得的额外利益。
1703868034
1703868035
[1]大约有500万人参加这个计划,包括译者本人。——译者注
1703868036
1703868037
[2]蛋白质折叠问题被列为“21世纪的生物物理学”的重要课题,它是分子生物学中心法则尚未解决的一个重大生物学问题。——译者注
1703868038
1703868039
1703868040
1703868041
1703868043
区块链技术驱动金融:数字货币与智能合约技术 8.4 不能外包的解谜算法
1703868044
1703868045
我们现在再看一下对于替代挖矿解谜的另一个设计重点:防止矿池的产生。我们在先前的第5章里谈到,大部分的比特币矿工都会加入一个矿池,而不是独立挖矿。这就造成了少量矿池拥有绝大部分挖矿算力的现象。由于每个矿池都有一个中心化的管理方,有些人担心这其实违反了比特币去中心化的核心设计原则,会危害到比特币的安全性。
1703868046
1703868047
拥有大部分算力的矿池显然是一个问题,任何一个中心化管理的矿池可能会实施一套自定义的挖矿策略,然后用它来攻击网络。这种矿池也是黑客们攻击的目标,因为通过攻击矿池可以迅速地控制大量的挖矿算力。矿池管理员也可能会删改交易或是强迫收取更高的交易费。矿池中拥有大多数矿工,意味着大部分矿工都没有运行一个完全有效节点。
1703868048
1703868049
有意思的是,这些担忧有着现实世界的影子,比如选票。在美国和其他许多国家,出售选票是非法的。加入一个被一方控制的矿池,和在比特币的共识协议里出售你的选票有点类似。
1703868050
1703868051
矿池的技术要求
1703868052
1703868053
回忆起来,矿池看起来是一个突然发生的现象。并没有证据显示,中本聪在比特币的最初设计中考虑过矿池的概念。在互相不信任的个体之间运行一个有效率的矿池,这样的事情在最初的几年里看起来不太现实。
1703868054
1703868055
正如我们在第5章所看到的,矿池通常会指定一个管理员,他有一个大家都知道的公钥。每一个加入的矿工还是按照往常一样进行挖矿,然后递交“近似”或者“部分”答案给矿池管理员,这些答案在低级别难度的时候可能就是一个有效答案,通过这种做法来证明他们做了多少工作量。当矿池中的某一个参与者找到了一个有效区块的时候,这个管理员会按照每个人所提交的工作量的占比来分配奖励。虽然有很多种不同的分配方式,但是所有矿池都遵循这个基本模式。
1703868056
1703868057
正因为如此,矿池的存在依赖于比特币的两大技术特征。第一,一个矿工很容易通过提交工分来证明(概率上)他所做的工作量。不管实际上找到一个有效区块是多么困难,通过设定一个足够低的合格工分的临界值,矿工可以容易地证明他们在任意精度的工作量。考虑到我们需要解谜题目可以在任意难度上被创造出来,这个问题看起来很难改变。
1703868058
1703868059
第二,矿池成员可以容易地向管理员证明,他们遵守规则并且通过实际运算来寻找有效区块,然后矿池会作为一个整体接受奖励。这是行得通的,因为这个矿池的公钥是被写进币基交易,并包括在区块里的梅克尔树上。即使一个矿工找到了一个有效区块,甚至只是一个近似区块(也叫工分),他也无法改变整个矿池的公钥,而成为新铸币的接受者。
1703868060
1703868061
“区块丢弃”攻击(block-discarding attack)
1703868062
1703868063
矿池的这种设计有一个弱点:没有办法来确保矿工在找到有效区块的时候一定会提交给管理员。假设有一个矿池成员对一个大型矿池不满,他可以正常地参与挖矿然后提交工分,但他在找到一个有效区块(可以让整个矿池获得奖励)的时候,并没有告诉管理员而是直接把它丢弃掉。
1703868064
1703868065
这个攻击降低了整个矿池的挖矿能力,因为攻击者的工作量并没有实际贡献到挖矿中去。但是这个矿工依然会收到奖励,因为他看起来也在不断地提交工分,只是运气不好没有找到有效的区块。如果这个矿池的奖励设计方案是收入中性的(也就是所有的挖矿奖励都被分发到每个参与者),那样的话这个攻击会让这个矿池亏损。
1703868066
1703868067
这种攻击被称作民间攻击或者是蓄意破坏攻击,这也被认为是一种蓄意破坏,因为这个攻击看上去对攻击者和矿池都是不经济的、代价不菲的。这个攻击者本身也会遭受损失,因为他所丢弃的有效区块将会使他放弃他应该有的一部分奖励回报。当然,这个攻击者还是会由于其他一些挖矿解密算法而获利。
1703868068
1703868069
看起来一个理性的矿工不会采用这种策略,因为他会有所损失而不会得到任何实际的回报。但(令人惊讶的是)在某些情况下,这个策略是可以有利可图的,我们在下文有所讨论。但是无论如何,我们想要设计一个全新的挖矿解谜算法,以确保这种策略永远都是有利可图的(以抵抗矿池的存在)。
1703868070
1703868071
1703868072
矿池之间的区块丢弃攻击
1703868073
1703868074
好多年以来,人们都觉得进行区块丢弃攻击是无利可图的,实际上如果两个矿池之间的互相攻击却不一样。这种方案已经被提出来好多次,伊泰·艾瑞尔(Ittay Eyal)2015年的论文中首次深入分析了这种攻击模式。
1703868075
1703868076
我们考虑一个简单的案例:假设两个矿池A和B,每个有50%的全部挖矿算力。现在假设B动用了一半的能力(25%的总体算力)来加入矿池A挖矿,然后把所有找到的有效区块丢弃掉。我们可以推演,在一个简单的模型里,B会赢得5/9的所有奖励,大于他正常挖矿时候所获得的50%的奖励。在这个简单的案例里,动用一半的挖矿算力去攻击矿池A对矿池B来说是一个最佳的策略。
1703868077
1703868078
这个案例随着矿池数量的增加而变得更加复杂。截至本书撰写之时,丢弃区块攻击在实际中还没有被大范围观察到。但长期来看可能性还是存在的,像这类攻击会对大型矿池的运营产生关键影响。
1703868079
[
上一页 ]
[ :1.70386803e+09 ]
[
下一页 ]