打字猴:1.703869116e+09
1703869116 我们还可以加第二个功能,允许钱回撤。按照初始的代码设计,钱只能不断堆积在合约里,也就意味着从流通中消失。当然,在可以回撤钱的程序里,最好能设定,调用回撤的是合约的主人。任何人在以太坊都可以调用任何方程,但是用户是指定的,所以能确认谁是真正调用方程的人。
1703869117
1703869118 燃料、激励和安全
1703869119
1703869120 和比特币不一样的是,以太坊支持循环语句,虽然第一个例子里并不需要循环。循环语句一听就容易让人产生警觉,因为有循环的地方就会有无限死循环。从根本上说,以太坊合约有可能因为种种原因而无限循环。计算机领域里一个著名的研究结果(难以判断的终止问题)证明,不存在任何算法,可以根据源代码去判断一个程序是否可以无限运行下去。因此,我们如何防止合约无限运行下去呢?
1703869121
1703869122 更进一步讲,即使条约不会无限运行,也需要某种方式来限制它不会运行太久。以太坊体系通过一种称作“燃料费用”的机制来实现这一点。简单地说,每执行一条虚拟机器的指令需要花费一小部分的成本费用,我们称之为“燃料费用”。不同的操作花费不同。基本的像加减操作只花费1单位燃料费用,而计算SHA-3哈希值(内置函数)需要20单位燃料费用,在永久存储器上写256比特长的字符需要100单位燃料费用。每笔交易也需要先支付21 000单位燃料费用。你可以把以太坊体系想象成超级折扣的航空公司。机票只是你支付乘飞机的费用,任何其他需求都要多付钱。完整操作清单和固定的燃料费用都可以从以太坊里找到。任何清单和费用的变动都需要以太坊产生一个硬分叉,这和比特币脚本语言的语义改变一样。
1703869123
1703869124 燃料费用是通过以太坊体系内部被称为以太(ether)的货币来支付的。它只是在用来支付合约操作的时候才叫燃料费用。每笔交易都规定了燃料的价格,也就是说,每份燃料需要多少以太。燃料费用就像比特币的交易费,矿工可以自由公布交易的燃料费用,每个矿工都可以独立地决定收费方式。这样会得出一个反映市场供求关系的燃料市场价格。2016年年初,虽然以太坊网络体系还是属于实验阶段,市场已经默认50 gigawei为1单位价格。50gigawei等于5×10-8以太,根据以太币和比特币2016年1月的汇兑比例,这也就是大约3×10-10比特币。
1703869125
1703869126 每次调用之前,必须设定燃料费用的最高限,也就是愿意支付价格的最大值。当达到这个值(燃料用完了),程序就会终止,发生的所有程序状态的变化就会被重新设置到原始状态,但是矿工还是保留燃料。由此可见,不要用完燃料,这一点非常重要。
1703869127
1703869128 燃料的使用要求,意味着以太坊不适合很耗费资源的计算。以太坊系统未被设计成像云计算那样的服务,即支付一定的费用让云服务完成自己无法做到的计算。像亚马逊的弹性计算云或者微软云计算平台,提供划算百万倍的计算量。另一方面,以太坊更加适合创建安全逻辑协议。本质上来说,以太坊提供了一种两个或者多个匿名交易者可以信赖的服务系统。
1703869129
1703869130 以太坊上区块链的安全还没有像比特币一样完善。理论上,以太坊比较复杂,也比较难以用数学推理来论证。实际上,以太坊才刚刚开始发展,其安全性还没有像比特币一样经过很多考验。尤其是,担心处理交易的成本会让类似比特币的激励机制失效,我们在共同挖矿的分析中讨论过存在这种担心的情况。当交易成本占矿工的总成本的比重不再能忽略不计的时候,大的矿工有明显优势,因为成本和哈希算力相互独立。更重要的是,燃料只支付给最初包括该交易的区块的挖工。但是所有的在这之上建立区块的矿工都必须验证该区块,却得不到任何报酬。这意味着,他们将有动力去跳过该验证。正如之前所看到的,这种情况不利于区块链体系的健康发展。
1703869131
1703869132 第二个例子:以太坊体系中的国际象棋
1703869133
1703869134 我们还没涉及以太坊中新功能如何运用,所以让我们看第二个案例。假设爱丽丝和鲍勃下国际象棋,赌注是一定数额的金钱。唯一的问题是爱丽丝和鲍勃生活在不同的国家,他们都不相信对方输了会支付赌注。这个问题可以用以太坊来解决。
1703869135
1703869136 爱丽丝写下以太坊程序,这个程序设定了国际象棋的规则并且被上传到以太坊网络。她给这个合约支付一定数量的以太作为赌注。鲍勃可以看到这个合约,如果他答应接受挑战,他把他的赌注支付给这个合约,就等于开始了这个游戏。鲍勃在接受挑战之前应该确认,这个合约是准确无误地遵守了国际象棋的规则,并且最后会把所有赌注支付给获胜者。
1703869137
1703869138 一旦双方都支付了赌注,假设他们约定下同样的赌注,合约会检查双方的赌注是否相等。这时候,游戏就开始了。任何一方除非赢了游戏,否则无法从合约里取出钱来。其他人在任何情况下也无法取得这笔钱。
1703869139
1703869140 爱丽丝和鲍勃轮流把自己的下棋步骤发给这个合约。这个合约也会检查轮到谁下确保指令是由爱丽丝或者鲍勃发出,而不是其他人。大家是否还记得调用者需要在每个操作(促使合约执行一个动作)上签名,因为合约可以根据签名确认调用者。合约也会根据国际象棋的规则校验双方的步骤。如果一方试图把兵移动3格,合约会拒绝该步骤。
1703869141
1703869142 到最后游戏结束。合约在每一步都会检测是否有一方被将军,或者双方打平,或者满足其他打平的条件。玩家也可以发送投降的指令。当游戏结束时,合约终止,并把所有的钱支付给获胜者,或者平局下平分赌注。
1703869143
1703869144 从概念上看,这是一个以太坊的简单应用,但是有很多微妙的地方值得探讨。如果一方快输了他就放弃了?合约应该设定一个机制,如果一方在规定的时间没有提交有效的下一步,钱就支付给另一方。
1703869145
1703869146 哪个玩家先走呢?白方先走的话,白方就拥有微小的优势。因此,双方都想做白方。这就碰到了以太坊合约的一个难题:没有内置的随机源。之所以是一个难题,是因为随机数发生器需要所有矿工的检验(因为他们需要检验合约是否正确地执行),但是这些随机数对任何人来说都是不可预测的(否则的话,玩家也许就因为不能先走而拒绝参加这个游戏)。
1703869147
1703869148 随机数“信号塔”(randomness beacons)可以解决这个问题。正如9.4节讨论的,在双方都加入游戏后,合约计算区块链下一个区块的哈希值。对这个特定的游戏应用而言,这个问题比较容易解决,因为只要让爱丽丝和鲍勃双方确信决定谁先谁后是随机的,这样就满足要求,而不需要向所有人证明。所以他们可以采用9.3节的办法:他们两个同时提交一个随机数的哈希值,并且公开他们的输入值,然后从双方的输入总值算出随机数。实际操作中,以上两种方法都可以使用。
1703869149
1703869150 其他应用
1703869151
1703869152 下棋也许很有趣,但是真正激动人心的是以太坊在金融领域的应用。我们在课本里讨论的大部分应用,包括市场预计、智能资产、托管支付、微支付渠道和混合服务,都可以在以太坊体系里实现。这些应用都有其细微的区别,但是相对比特币死板的协议,大多数情况下,这些应用都能相对容易地在以太坊体系内完成。
1703869153
1703869154 以太坊的状态和账户余额。第3章中,我们讨论了账本的两种方法: 基于账户和基于交易。在一个基于交易的账本中,如比特币,区块链只存储交易(加上一些少量的转载标题的设置数据)。为了方便验证交易,比特币的币值是无法分割的,即交易的结果必须整体被消费,可以自己消费,或者如果需要的话,换地址消费。交易实际上是在全球状态表上操作的,这个表称为“未花费交易输出列表”。但是比特币的协议并没有明确规定这个全球状态表。全球状态表的产生纯粹是矿工为了加快验证过程而创造出来的。
1703869155
1703869156 另一方面,以太坊则是基于账户的模式。由于以太坊已经存储了合约地址和状态的对照表的数据结构,很自然地也同时存储每个普通地址(或者叫拥有者的地址)的账户余额。这意味着,与非闭环式的交易支付模式必须有输入和输出不同,以太坊存储每个地址的账户余额,这一点,与银行存储每个账户余额的方式类似。
1703869157
1703869158 以太坊的数据结构。在第3章,我们提到基于账户的账本需要精心设计的数据结构来存储记录。以太坊就有这样的数据结构。具体来说,每个区块包含每个地址的目前状态(账户余额和交易数)的摘要,同时也包含每个合约的状态(余额和存储空间)。每个合约的存储树结构映射256比特的地址和256比特的字节。这样可以存储巨量的(2256×256=2264)信息。当然,这只不过是理论上的可能空间,我们不会用到这么大的存储空间。数据结构里面提供的摘要,使验证一个地址有多少余额或者空间变得相对容易。比如,不需要鲍勃从头到尾扫描整个区块链,爱丽丝就可以向鲍勃证明她有多少余额。
1703869159
1703869160 此时,比特币用简单的二项梅克尔树的结构可以派得上用场。因为它可以把有效的证明数据存在该区块里(要求矿工确信对于相同的地址,每个树状数据结构都要求该地址相同的状态)。但是我们也希望能够更快地查询地址并且能够有效更新地址的数值。为了达到这个目的,以太坊使用比较复杂的树状结构,叫帕特里夏树(Patricia tree)、前缀树(prefix tree)、字典树(trie)或基数树(radix tree)。每个以太坊区块包含梅克尔-帕特里夏树(Merkle Patricia tree)的树根,它保存每个地址的状态,也包含合约地址。每个合约的状态,包含一个树状数据结构用来保存合约的存储状态。
1703869161
1703869162 基于账户账本的另一个不易处理的问题是防止重复攻击。在比特币里,每个交易都使用“未花费交易输出列表”输入,因此,任何相同签名认证过的交易,不可能被重复使用两次。但是在以太坊设计里,需要确保当爱丽丝签下支付给鲍勃1以太交易的时候,鲍勃不能一次又一次地对外广播并重复使用这个1以太,直到把爱丽丝的账户用光。这样的交易不能重复,因为一旦使用了,爱丽丝的交易计数会增加一次,而这个交易计数是一个全局的状态参数。
1703869163
1703869164 总的来说,以太坊使用比比特币更加强大的数据结构来管理它的账本。虽然我们没有深入研究它的数据结构,但我们知道,这个数据结构使得账户、合约,以及交易相关声明的有效验证变成可能。
1703869165
[ 上一页 ]  [ :1.703869116e+09 ]  [ 下一页 ]