1703948550
1703948551
埃森哲与无线传感监测系统
1703948552
1703948553
FlightCaster的大数据思维
1703948554
1703948555
谷歌与亚马逊,三者兼备
1703948556
1703948557
数据中间商,交通数据处理公司Inrix
1703948558
1703948559
The-Numbers.com与电影票房预测
1703948560
1703948561
苹果,挖出“潜伏”的数据价值
1703948562
1703948563
Decide.com与商品价格预测
1703948564
1703948565
2011年,西雅图一家叫Decide.com的科技公司推出了一个雄心勃勃的门户网站,它想为无数顾客预测商品的价格。不过它最初计划的业务范围只限于电子产品,包括手机、平板电视、数码相机等。公司的计算机会收集电子商务网站上所有电子产品的价格数据和产品信息。
1703948566
1703948567
网络产品的价格受一系列因素的影响全天都在不断更新,所以公司收集的价格数据必须是即时的。这不仅是一个“大数据”问题,还是一个“大文本”问题,因为系统必须进行数据分析,才会知道一个产品是不是下架了或者是不是有新产品要发布了,这些都是用户想知道的信息而且都会影响产品价格。
1703948568
1703948569
经过一年的时间,Decide.com分析了近400万产品的超过250亿条价格信息。它发现了一些过去人们无法意识到的怪异现象,比如在新产品发布的时候,旧一代的产品可能会经历一个短暂的价格上浮。大部分人都习惯性地认为旧产品更便宜,所以会选择买旧产品,其实这取决于你什么时候购买,不然有可能你付出的金钱比购买新产品还要多。因为电子商务网站都开始使用自动定价系统,所以Decide.com能够发现不正常、不合理的价格高峰,然后告知用户何时才是购买电子产品的最佳时机。
1703948570
1703948571
大数据的力量
1703948572
1703948573
根据公司内部分析显示,它的预测准确率可以达到77%,平均可以帮助每个顾客在购买一个产品时节省100美元。
1703948574
1703948575
表面上,Decide.com就像众多前途光明的科技公司一样,在创新地使用数据、赚取利润。但是事实上,让Decide.com异军突起的不是数据,不是技术,而是思维观念。Decide.com使用的数据都来自电子商务网站和互联网,这是公开的数据,每个人都可以利用。技术上,公司也并没有无可替代的技术人才。所以,虽然数据和技术也是不可或缺的,但是真正使得该公司取得成功的是他们拥有大数据的思维观念。它先人一步地挖掘出了数据的潜在价值。Decide.com和Farecast之间似乎有着相通性,如果你知道它们都是华盛顿大学奥伦·埃齐奥尼先生的杰作,你就知道原因了。
1703948576
1703948577
上一章中,我们讨论了怎样通过创新用途,挖掘出数据新的价值,主要是指我们所说的潜在价值。如今,我们的重点转移到了使用数据的公司和它们如何融入大数据价值链中。我们将讨论这对公司、个人的事业和生活意味着什么。
1703948578
1703948580
大数据价值链的3大构成
1703948581
1703948582
根据所提供价值的不同来源,分别出现了三种大数据公司。这三种来源是指:数据本身、技能与思维。
1703948583
1703948584
第一种是基于数据本身的公司。这些公司拥有大量数据或者至少可以收集到大量数据,却不一定有从数据中提取价值或者用数据催生创新思想的技能。最好的例子就是Twitter,它拥有海量数据这一点是毫无疑问的,但是它的数据都通过两个独立的公司授权给别人使用。
1703948585
1703948586
第二种是基于技能的公司。它们通常是咨询公司、技术供应商或者分析公司。它们掌握了专业技能但并不一定拥有数据或提出数据创新性用途的才能。比方说,沃尔玛和Pop-Tarts这两个零售商就是借助天睿公司(Teradata)的分析来获得营销点子,天睿就是一家大数据分析公司。
1703948587
1703948588
第三种是基于思维的公司。皮特·华登(Pete Warden),Jetpac的联合创始人,就是通过想法获得价值的一个例子。Jetpac通过用户分享到网上的旅行照片来为人们推荐下次旅行的目的地。对于某些公司来说,数据和技能并不是成功的关键。让这些公司脱颖而出的是其创始人和员工的创新思维,他们有怎样挖掘数据的新价值的独特想法。
1703948589
1703948590
大数据洞察
1703948591
1703948592
到目前为止,前两种因素一直备受关注,因为在现今世界,技能依然欠缺,而数据则非常之多。近年来,一种新的职业出现了,那就是“数据科学家”。数据科学家是统计学家、软件程序员、图形设计师与作家的结合体。与通过显微镜发现事物不同,数据科学家通过探寻数据库来得到新的发现。全球知名咨询管理公司麦肯锡,就曾极端地预测数据科学家是当今和未来稀缺的资源。如今的数据科学家们也喜欢用这个预测来提升自己的地位和工资水平。
1703948593
1703948594
同时,谷歌的首席经济学家哈尔·范里安(Hal Varian)认为统计学家是世界上最棒的职业,他的这种说法非常著名。“如果你想成功,你不应该成为一个普通的、可被随意替代的人,你应该成为稀缺的、不可替代的那类人,”他还说,“数据非常之多而且具有战略重要性,但是真正缺少的是从数据中提取价值的能力。这也就是为什么统计学家、数据库管理者和掌握机器理论的人是真正了不起的人。”
1703948595
1703948596
但是,过分强调技术和技能而忽视数据本身的重要性也是不可取的。随着计算机行业的发展,人力技术的落后会被慢慢地克服,而范里安所赞赏的技能将会变成十分普通的事情。认为当今世界数据非常之多,所以收集数据很简单而且数据价值并不高的想法是绝对错误的——数据才是最核心的部分。要知道原因,就必须考虑到大数据价值链的各个部分,以及它们会如何发展变化。
1703948597
1703948599
大数据掌控公司
[
上一页 ]
[ :1.70394855e+09 ]
[
下一页 ]