打字猴:1.703948776e+09
1703948776
1703948777 这个公司的大数据分析家们通过颜色或者是否有玩家看到他的朋友正在使用这些产品,来研究虚拟产品的销量是否增加了。比方说,当数据显示FishVille的玩家购买透明鱼的数量是其他产品的6倍的时候,zynga就会通过多出售透明鱼而谋取更高利润。在Mafia Wars中,数据则显示玩家更喜欢购买有金边的武器和纯白的宠物老虎。这些都不是一个游戏设计师在工作室里能发现的东西,但是数据就能把这些信息传递出来。zynga的首席分析师肯·鲁丁说道,“我们打着游戏公司的幌子,实际上在做的是分析公司的事。我们的运作都是以数据为基础的。”
1703948778
1703948779 这种转变意义非凡。大部分人往往都通过经验、回忆以及猜测做决定,就像W.H.奥登(Wystan Hugh Auden)的名诗中所说的“知识退化成骚乱的主观臆想,那是太阳神经丛的感情引起的营养不足”。坐落于马萨诸塞州的巴布森学院商科教授托马斯·达文波特(Thomas Davenport)是多部数据分析著作的作者,他把这种情感称为“黄金般的直觉”。执行官们信任自己的直觉,所以由着它做决定。但是,随着管理决策越来越受预测性分析和大数据分析的影响和控制,依靠直觉做决定的情况将会被彻底改变。
1703948780
1703948781 大数据先锋
1703948782
1703948783 The-Numbers.com与电影票房预测
1703948784
1703948785 比方说,The-Numbers.com在好莱坞电影上映之前,就能利用海量数据和特定算法预测出一部电影的票房,而这些信息就可以为电影制片人所用。该公司拥有一个包括了过去几十年美国所有商业电影大约3000万条记录的数据库;数据库里有所有关于预算、电影流派、拍摄、阵容、获得奖项和收入等数据。电影的收入是指在北美和全球的票房、海外版权销售收入、影碟销售收入以及租金等。公司创始人兼总裁布鲁斯·纳什(Bruce Nash)说,我们公司开发了一个网络系统,其中有100万条类似“A编剧曾与B导演合作过,C导演曾与D演员合作过”这样的联系信息。
1703948786
1703948787 该公司通过找出这样复杂的相关关系来预测电影的收入。借助于这个预测,电影制片人可以向工作室或投资人募资。The-Numbers.com甚至可以告诉客户改变哪些选择可以增收或者降低风险。一次,它的分析发现有一部电影要是启用获得过奥斯卡提名的、身价在500万美元左右的某位一线演员做男一号的话,更有可能票房大卖。还有一次,纳什告诉IMAX工作室,一部航海纪录片需要把预算从1200万美元减少至800万才能赢利。纳什开玩笑地说:“这可乐坏了制片人,但是导演就不高兴了。”
1703948788
1703948789 从是否出品一部电影到签下哪个三垒手,公司的决策过程已经有了本质且明显的改变。麻省理工学院商学院教授埃里克·布伦乔尔森(Erik Brynjolfsson)和他的同事一起进行了一项研究,发现决策依赖数据的公司的运营情况比不重视数据的公司出色很多——这些公司的生产率比不使用数据进行决策的公司高6%。这是一个重要的竞争力,虽然随着大数据手段被越来越多的公司采用,这种竞争力会慢慢削弱。
1703948790
1703948791 大数据时代:生活、工作与思维的大变革 [:1703946889]
1703948792 大数据,决定企业竞争力
1703948793
1703948794 大数据成为许多公司竞争力的来源,从而使整个行业结构都改变了。当然,每个公司的情况各有不同。大公司和小公司最有可能成为赢家,而大部分中等规模的公司则可能无法在这次行业调整中尝到甜头。
1703948795
1703948796 虽然像亚马逊和谷歌一样的行业领头羊会一直保持领先地位,但是和工业时代不一样,它们的企业竞争力并不是体现在庞大的生产规模上。已经拥有的技术配备规模固然很重要,但那也不是它们的核心竞争力,毕竟如今已经能够快速而廉价地进行大量的数据存储和处理了。公司可以根据实际需要调整它们的计算机技术力量,这样就把固定投入变成了可变投入,同时也削弱了大公司的技术配备规模的优势。
1703948797
1703948798 大数据洞察
1703948799
1703948800 规模仍然很重要,但是如今重要的是数据的规模,也就是说要掌握大量的数据而且要有能力轻松地获得更多的数据。所以,随着拥有的数据越来越多,大数据拥有者将大放异彩,因为他们可以把这些数据转化为价值。
1703948801
1703948802 大数据向小数据时代的赢家以及那些线下大公司(如沃尔玛、联邦快递、宝洁公司、雀巢公司、波音公司)提出了挑战,后者必须意识到大数据的威力然后有策略地收集和使用数据。同时,科技创业公司和新兴行业中的老牌企业也准备收集大量的数据。
1703948803
1703948804 在过去十年里,航空发动机制造商劳斯莱斯通过分析产品使用过程中收集到的数据,实现了商业模式的转型。坐落于英格兰德比郡的劳斯莱斯运营中心一直监控着全球范围内超过3700架飞机的引擎运行情况,为的就是能在故障发生之前发现问题。数据帮助劳斯莱斯把简单的制造转变成了有附加价值的商业行为:劳斯莱斯出售发动机,同时通过按时计费的方式提供有偿监控服务(一旦出现问题,还进一步提供维修和更换服务)。如今,民用航空发动机部门大约70%的年收入都是来自其提供服务所赚得的费用。
1703948805
1703948806 大数据先锋
1703948807
1703948808 苹果,挖出“潜伏”的数据价值
1703948809
1703948810 苹果公司进军移动手机行业就是一个很好的例子。在iPhone推出之前,移动运营商从用户手中收集了大量具有潜在价值的数据,但是没能深入挖掘其价值。相反,苹果公司在与运营商签订的合约中规定运营商要提供给它大部分的有用数据。通过来自多个运营商提供的大量数据,苹果公司所得到的关于用户体验的数据比任何一个运营商都要多。苹果公司的规模效益体现在了数据上,而不是固有资产上。
1703948811
1703948812 大数据也为小公司带来了机遇。用埃里克教授的话说就是,聪明而灵活的小公司能享受到非固有资产规模带来的好处。这也就是说,它们可能没有很多的固有资产但是存在感非常强,也可以低成本地传播它们的创新成果。重要的是,因为最好的大数据服务都是以创新思维为基础的,所以它们不一定需要大量的原始资本投入。数据可以授权但是不能被占有,数据分析能在云处理平台上快速而且低成本地进行,而授权费用则应从数据带来的利益中抽取一小部分。
1703948813
1703948814 大大小小的公司都能从大数据中获利,这个情况很有可能并不只是适用于使用数据的公司,也适用于掌握数据的公司。大数据拥有者想尽办法想增加它们的数据存储量,因为这样能以极小的成本带来更大的利润。首先,它们已经具备了存储和处理数据的基础。其次,数据库的融合能带来特有的价值。最后,数据使用者如果只需要从一人手中购得数据,那将更加省时省力。不过实际情况要远远复杂得多,可能还会有一群处在另一方的数据拥有者(个人)诞生。因为随着数据价值的显现,很多人会想以数据拥有者的身份大展身手,他们收集的数据往往是和自身相关的,比如他们的购物习惯、观影习惯,也许还有医疗数据等。
1703948815
1703948816 这使得消费者拥有了比以前更大的权利。消费者可以自行决定把这些数据中的多少授权给哪些公司。当然,不是每个人都只在乎把他的数据卖个高价,很多人愿意免费提供这些数据来换取更好的服务,比如想得到亚马逊更准确的图书推荐。但是对于很大一部分对数据敏感的消费者来说,营销和出售他们的个人信息就像写博客、发Twitter信息和在维基百科检索一样自然。
1703948817
1703948818 然而,这一切的发生不只是消费者意识和喜好的转变所能促成的。现在,无论是消费者授权他们的信息还是公司从个人手中购得信息都还过于昂贵和复杂。这很可能会催生出一些中间商,它们从众多消费者手中购得信息,然后卖给公司。如果成本够低,而消费者又足够信任这样的中间商,那么个人数据市场就很有可能诞生,这样个人就成功地成为了数据拥有者。美国麻省理工学院媒体实验室的个人数据分析专家桑迪·彭特兰与人一起创办的ID3公司已经在致力于让这种模式变为现实。
1703948819
1703948820 只有当这些数据中间商诞生并开始运营,而数据使用者也开始使用这些数据的时候,消费者才能真正变成数据掌握者。如今,消费者在等待足够的设备和适当的数据中间商的出现,在这之前,他们希望自己披露的信息越少越好。总之,一旦条件成熟,消费者就能从真正意义上成为数据掌握者了。
1703948821
1703948822 不过,大数据对中等规模的公司帮助并不大。波士顿咨询集团的资深技术和商业顾问菲利浦·埃文斯(Philip Evans)说,超大型的公司占据了规模优势,而小公司则具有灵活性。在传统行业中,中等规模的公司比大公司更有灵活性,比小公司更有规模。但是在大数据时代,一个公司没必要非要达到某种规模才能支付它的生产设备所需投入。大数据公司发现它们可以是一个灵活的小公司并且会很成功(或者会被大数据巨头并购)。
1703948823
1703948824 大数据洞察
1703948825
[ 上一页 ]  [ :1.703948776e+09 ]  [ 下一页 ]