打字猴:1.704272908e+09
1704272908 如果想有一个概括性的认识,那么最好是视项目的复杂程度,采用单一或者复合图表的形式,将数据可能带来的增值(数据吸引力)和获得数据需要付出的成本(数据可获取性)之间的关系呈现出来。
1704272909
1704272910
1704272911
1704272912
1704272913 通过梳理并理解既有和潜在的数据源,大多数企业反而找不到清晰的思路了。一个原因是,很多企业发现它们拥有的数据量远远超出它们的应用能力。这一点在交易数据上反映得最为明显。但是,不能仅仅因为客户信息数据库不能与用户产生相互作用,就认为数据库中的数据是没有意义的。我们需要赶快建立起一种意识,即只有通过无负担地审视我们具有功能障碍的ERP系统数据,才能够使“数据坟墓”[1]重新焕发生机。事实情况也往往是这样的。另外,市场营销人员需要意识到,出于数据保护原因导致的数据使用障碍越来越少,低于内外部数据管理人员宣扬的程度,尤其在涉及个人数据的使用与收集的时候。还有一种普遍认识渐趋流行,那就是在单一客户层面,缺乏交易数据并不会导致智能数据分析工作停滞,相反会使项目进行得更快。一开始就掌握较少信息的人,反而会更快地获得相应的结果。这是因为掌握的数据越多,工作量也就越大,就越不易获得结果。
1704272914
1704272915 同一个决策者,当听到公司已经拥有200万个客户时,这也许对他来说是个好消息。但是,如果他随后又听到,在这200万个客户中,“我们只掌握20万个客户的邮箱地址,而其中还有1/3我们无法确定是否还在被活跃使用”,那么这个决策者可能会感到不安。市场数据并不能算是可靠稳定的信息,通过购买方式获得市场数据也比我们想象的贵很多,这也是很多公司至今没有花钱去额外购买市场数据的原因之一。
1704272916
1704272917 我们已经感觉到,在数据项目的这个阶段,舆论氛围发生了逆转,期望借助分析工具从数据瘫痪中解脱出来比我们想象的还要艰难和耗时。我们还是先别这样做了。在智能数据流程中的这个阶段,如果想获得成功,那么项目负责人就需要马上启动以下步骤:
1704272918
1704272919 ☆不用非要获得大而全的数据量。试验证明,基于现有30%的数据以及既有的数据质量开展数据分析,我们就可以获得更好的增值。但同时阐明,这仅仅只是起点,每一次数据迭代更新都会带来惊人的“学习效应”。
1704272920
1704272921 ☆系统性地寻找潜在的合作伙伴开展数据互换。他们可以是供应商、贸易商、金融服务提供商、通信公司或影响力较大的电视节目。这样做的目的是建立一种网络联系,网络参与者在数据方面互相支持,以期获得对客户潜力更准确的认识(有时也包括对单一客户的认识)。
1704272922
1704272923 ☆尽可能准确地评估出,为获得缺失数据我们要付出多少成本,以及这样做可以为我们带来多少增值。简单地说就是,我们需要有一个确切的决策基础,才能做出投资决策,从而才能获得数字化竞争力。
1704272924
1704272925 ☆寻找到解决问题的非常见做法。经验表明,几乎所有的数据问题都有一个创造性的解决方法,这个方法既不会拖延项目进度,也不会影响分析结果的准确性,但一样可以解决问题。
1704272926
1704272927 举个例子。在贸易中,一个典型的问题就是,我们不认识客户。客户进店的时候我们不知道他的名字,走的时候我们一样还是不知道,除非这个客户持有会员卡。我们可以期待,会发明一个客户关系管理系统,通过蓝牙、信标或者客户App等方式,帮助我们识别进店的客户是谁,并且将全套客户信息发送给店铺柜台。但是无论如何,我们现在还不知道,哪些正在测试的系统将来会投入使用,以及有多少客户会使用这些系统。
1704272928
1704272929 柜台开出的票据和电子商店的运行数据均以百万计,在初始阶段,系统性地利用这些信息具有一定意义。与开展一个包罗万象的大数据分析相比,此举可以获得一个基于客户行为的客户分类结果。我们肯定是要推广这种CRM系统的,但是当我们意识到存在这种相互作用的客户分类,且据此实施了相应的市场营销和企业运营措施,并积累了关于这些措施的效率和效果方面的经验之后,我们将能够更智慧地推广使用这个系统。
1704272930
1704272931 总结一下,当我们解决了如下问题,智能数据流程的第二阶段就接近尾声了。
1704272932
1704272933 ☆我们了解了如何更好地走近客户。
1704272934
1704272935 ☆我们了解了需要哪些数据辅助我们寻求问题的解决方案。
1704272936
1704272937 ☆我们知道,在不增加公司技术、人力和财务成本的情况下,我们如何获得所需的数据。
1704272938
1704272939 客户需求理解
1704272940
1704272941 “更好地了解客户需求”。这九个字可谓是数据革命给予服务业最大的承诺。作为全球最大的在线商店,亚马逊很好地示范了在数据库基础牢靠的情况下,针对单一客户市场,它是怎样将数据革命的愿景转化为现实的。在线商店将数据资源嵌入到它们的系统中,作为发货商,在线商店可以获取所有客户的名字和地址信息。通过分析在线消费者留下的信息痕迹,在线商店可以更准确地定位到潜力客户群体。虽然在线商店不是真的对它们的消费者有私人了解,消费者对它们而言只是以不同的IP地址形式而存在,但光是这些IP地址也留下了内容丰富的购物信息,这对在线商店来说有很大用处。
1704272942
1704272943 “更好地了解客户需求”。这九个字可谓是数据革命给予服务业最大的承诺。
1704272944
1704272945 很多与我们合作过的公司,本身都不是纯在线供应商。它们一般都来自相关领域,后来创立并扩展了数字化业务。它们服务于单一客户,并且会要求雇员尽量去满足客户的个性化诉求,并提供客户咨询。但是它们现行的市场营销和企业运营措施中的绝大部分是基于客户细分,或者说是基于一种建模——这个模型致力于寻求客户行为的普遍规律。
1704272946
1704272947 客户细分的意思就是,将市场细分为不同的客户群组,每一个群组的客户都具有同质化的消费行为。或者更确切地说,按照做出消费决策之前相同或者尽可能相似的决策因素,将客户进行分类,但是不同的决策因素最终产生出相同的决策结果也是有可能的。不同客户群组之间,在消费行为方面最好界限清晰。在书本中,这属于逻辑的同一性原则,但在实践中情况可能还不一样。
1704272948
1704272949 在智能数据流程进入第三阶段之初,我们需要先系统全面地评价公司现行的客户细分情况。然后我们会很快地发现,不同部门之间遵循着完全不同的客户分类逻辑。在一个企业集团中,往往会有数十种客户分类共存。当我们系统梳理并回顾之前的工作,会呈现出如下情况:
1704272950
1704272951 ☆营销战略部门按照心理因素进行客户分类,致力于探究客户价值和客户需求。这方面的一个例子就是目标客户模型Sinus Milieus,或称Sigma Milieus,即基于人群的市场细分模型。除了社会阶层从属(即社会地位)之外,这个模型还考虑了其他一些主要的影响因素,例如传统、现代化(个性化),还有自身重新定位等。战略规划者认为客户分类应基于他们的生活环境,这对企业的长期定位和战略规划来说无疑是有意义的。
1704272952
1704272953 ☆产品营销部门优先考虑的是消费者类型。这基于一个根本性问题:对于某个具体产品或者服务,我们如何能辨别出一个人
1704272954
1704272955 •是否知道这项产品或服务
1704272956
1704272957 •是否需要这项产品或服务
[ 上一页 ]  [ :1.704272908e+09 ]  [ 下一页 ]