打字猴:1.70427302e+09
1704273020
1704273021 在分层聚类分析过程中,不需要事先就确定簇的数量,这对模式探索型的聚合分析流程来说是一大优点。然而,在划分聚类分析中,必须要预先就确定好簇的数量。总体来看,划分聚类分析的各种方法间存在共性,都是根据预先确定好的簇的数量选择出相应数量的对象,将每个对象的初始值作为单一簇的平均值或者中心点,然后反复调整聚类划分,直到误差函数最小化为止。其中,最著名且应用最广泛的误差函数是K均值(K-Means)算法:先根据既定的簇数随机选择出相应数量的对象,将这些对象的初始值作为每个簇的平均值,对剩余的每个对象,根据其与初始均值之间的差异程度,将其归入相应的簇。然后再重新计算每个簇的误差函数平均值。这个过程不断重复,直到每个簇中各对象的差异不显著(或者说误差最小化)。
1704273022
1704273023 划分聚类分析中还有一种算法是K中位数(K-Medians)或者模糊C均值(Fuzzy C-Means)。K均值的最大好处是,它尤其适合大规模的数据分析,因为它在算法方面不像分层聚类分析那么复杂。但是K均值算法的问题在于对异常值的敏感度过大,偶尔会导致十分小的聚类被划分出来。另外,该算法是基于随机选取的初始值,因此在反复调整过程中,划分结果不是很稳定。此外,结果缺乏可再现性也是缺点之一。分层聚类分析可以补偿划分聚类分析的缺陷,因此可以将分层聚类分析中产生出的聚合分类结果作为K均值分析方法的簇数起点值。
1704273024
1704273025 3.密度聚类分析
1704273026
1704273027 密度聚类分析背后的逻辑是,将被观察者视为一个空间内的点,尽管这些观察者之间存在很多差异化特征。首先我们要识别出这个空间内的高密度区和低密度区,并以此为基础建立起簇。这种分析方法的核心流程就是所谓的“具有噪声的基于密度的聚类方法”(Density-Based Spatial Clustering of Applications with Noise,简称DBSCAN)。根据这个空间内点之间的距离,我们会识别出密度最高的区域,并将这个高密区内的点作为核心点。还有一些点处于中等密度区域,我们将这些点称为边界点,被归至周边的簇。还有一些点,分布非常稀疏,我们将这些点称为噪声点。DBSCAN分析方法的优点之一,是不需要提前就确定簇的数量,这与分层聚类分析法有异曲同工之妙。与K均值分析法相比,DBSCAN方法具有一个关键优势,即可以识别非线性聚类,并可以有效对抗异常值。但是当空间簇的密度不均匀、间距差相差很大时,DBSCAN聚类质量较差。DBSCAN是相对比较新的聚类分析方法(1996年才被提出),目前已经发展成为机器学习领域最重要的算法之一。
1704273028
1704273029 4.模糊聚类分析
1704273030
1704273031 目前既存的系统化聚类分析流程都是将一个因素明确地归入某一个簇中,这是所谓的“硬流程”。模糊聚类分析属于“软流程”,即某一个因素可以被归入一个以上的簇,换句话说,就是在识别聚类从属性的不同等级。模糊聚类分析中最有名的算法是模糊C均值(FCM)。首先假定每一个被观察对象都能够或者倾向于被归入一个簇,那么处于簇中心位置的被观察者归入这个簇的可能性高一些,处于簇边缘的被观察者纳入这个簇的可能性相对低一些,或者说簇边缘的被观察者也有可能被纳入其他簇。
1704273032
1704273033 从技术层面上看,模糊聚类分析的逻辑与K均值算法类似。模糊聚类分析这一设想的目的是,实现一个被观察对象被归入不止一个簇中,这在某些特定的应用案例中更具现实价值。如果市场和客户细分部门希望获得明确的聚类结果(例如要去评估某一聚类集合的市场潜力),在对客户针对不同商品种类的消费行为和购买决策进行统计分析时,多维的聚类可能更有意义。例如,为了精准定位并营销旅行社潜在客户,我们可以利用模糊聚类分析方法,通过分析交易数据信息,从而去识别客户的旅行类型。此时,有些客户或被归入多个特征组,例如海滩度假组、城市游组等,这可以帮助我们为客户提供多样化的选择。
1704273034
1704273035
1704273036
1704273037
1704273038 多维度的统计学细分流程如果想起作用,那么首要的就是对使用者而言,分类结果不能太宽泛。举一个分类结果宽泛的例子:有一个关于消费者的聚类分组,组中九成的消费者收入较高;85%的消费者是稳定客户,并且会关注商品的质量、安全性和售后服务;组中的消费者平均家庭人口在2~3人之间,每月平均支出980欧元用于家用,这其中有430欧元都是在同一家商店消费的。企业如果希望通过聚类分析来获得决策支撑,那么分类结果所要描述的特征应该尽可能少,并且清晰可辨,这样对企业来说容易理解、易于操作。
1704273039
1704273040 所谓的“好问题”(Power Questions)可以帮助我们,将客户归于某一细分类别中。例如可以这样提问:
1704273041
1704273042 ☆客户会购买名牌商品吗?
1704273043
1704273044 ☆客户每个月是至少给我们支付400欧元购买生活用品吗?
1704273045
1704273046 ☆客户基本上80%的结算都要通过转账完成吗?
1704273047
1704273048 ☆客户买婴儿用品吗?
1704273049
1704273050 “好问题”的答案是明确的,通过这些答案可以建立一个决策树。通过决策树调整统计学聚类分析结果,我们会发现,聚类分析不一定能够百分之百贯彻下去。在理想情况下,90%以上的客户会被明确地归入某一类。70%~80%的聚类程度是可接受的水平。如果聚类水平低于70%,就不足以获得清晰可辨的分类结果。原则上,我们此时就可以判断我们初步设想有问题。在这一点上,大家的观点也不统一,不过及早地意识到这一点,并提出新的设想,重新运行一次智能数据分析流程,也没什么坏处。不准确的细分无疑会导致瞄准错误客户或者采取错误的市场营销措施,从而给公司造成损失,重新运行总比遭受这些损失要好。
1704273051
1704273052 同时,即便是达到90%聚类水平的最好的细分情况,如果客户服务人员不能理解或者不能够正确使用,那也是惘然。这听起来是理所当然的事情,但是在实践中却经常被忽略。
1704273053
1704273054 对此,我们在一个世界领先的IT生产商的大项目中感触最深。企业总部的战略营销部门逻辑清晰地为大部分B2B聚类分组都起了名字,比如“印刷发烧友”或者“累垮的工人”。然后成立了产品设计部门,并制定了产品战略。遗憾的是,处于销售环节的员工无法理解什么是印刷发烧友,哪些人又是累垮的工人。
1704273055
1704273056 智能数据细分能够帮助我们有效减少、简化聚类结果。首先,我们分析易得的交易数据,根据交易额信息确定出所需聚类。接下来,我们转而分析市场研究提供的购买决策信息和有关公司构架的信息。然后,我们制作有针对性的广告,并将广告信息准确传递给正确的目标客户,达到90%以上的“击中率”。这样可以减少瞄准错误客户的情况,并且可以提高广告的有效性,使广告的效用与增额投入成正比。
1704273057
1704273058 市场营销人员不需要精通,也不需要深入理解这些数理统计学原理。但需要知道的是,原则上,对交易数据的分析是起点,进而去分析交互数据和市场研究数据。智能数据分析和传统的聚类分析方法的目的一样,都是尽可能地分析出同质群组中清晰可辨的消费者行为特征。获得一次性、静止的分析结果不能算作数据分析成功,我们需要的是每月、每天甚至是实时都能进行动态分析。
1704273059
1704273060 智能数据分析和传统的聚类分析方法的目的一样,都是尽可能地分析出同质群组中清晰可辨的消费者行为特征。
1704273061
1704273062 产品设计部门的可视化工具特别适合用来展示聚类分析结果。例如,用情绪板展示特定类型客户的生活空间,或者利用Mockups产品原型设计工具呈现出与真实大小一样的实体模型,使同事们对聚类分析结果产生感官上的认识。还有一些企业实现了进一步发展,引进并使用了设计思维工具。它能够让使用者产生身临其境的感觉,仿佛坐在目标客户群体的起居室中,或者仿佛自己是一个客户咨询顾问,坐在一个特定观察环境中的角落里,静静地观察并分析客户行为,此时,对客户分类将会有更敏锐及清醒的认识。
1704273063
1704273064 真正的智能数据聚类分析
1704273065
1704273066 让我们暂时先把市场营销的事情放下。在一个广告宣传和产品销售更完善的世界中,极其智能化的客户聚类分析应该是什么样子的呢?我们可以设想一下。在这个世界中,宣传这个概念不再适用了,因为一对一的交流更像是对话,而不是宣传。针对具体的交易是如何发生的问题,产品价值和客户社会从属性因素的指导意义也逐渐弱化。我们不再按照年龄、收入或者最喜爱的汽车品牌等因素划分潜在客户类型。我们已经意识到,消费者本身具有复杂的特质。对于每一个消费者而言,在其做出每一次购买决策时,考虑的因素都是完全不同的。真正的智能数据聚类分析可以告诉我们,在不同的消费情境下,影响单次购物决策的因素都有哪些。相应地,以具体客户为中心,可以为每一次购物决策提供量身定制的分析结果。在极限情况下,每一个细分类别中仅存一个客户。
1704273067
1704273068 换句话说就是:在每次市场营销措施实施之前,基于重要的购买影响因素,一个反应性能良好的、持续自学习的IT系统会整合出一个全新的聚类,并将单一客户有目的地归入其中。
1704273069
[ 上一页 ]  [ :1.70427302e+09 ]  [ 下一页 ]