1704273570
☆第三步:开放性地研究客户的购买潜力。借助于捷孚凯(GfK)和尼尔森市场研究公司数据库中的邮政编码信息来研究,会相对容易一些。
1704273571
1704273572
☆第四步:将差异化的客户购买潜力情况与自身选址、最重要竞争者的选址情况进行比较,发现市场空白点。
1704273573
1704273574
☆第五步:系统化地评估潜力区域内的客户需求,评估有市场研究数据支撑的网点,评估既存的、有相似客户潜力的网点的交易数据。
1704273575
1704273576
☆第六步:到这步,我们才开始去寻找具体的选址。虽然存在例外情况,但在一般情况下,我们要避免与强劲竞争者挨得太近。如果物理距离太近,那么就要经受考验,与已经“树起旗杆”的竞争者相比,我们是不是能够以一种全新的贸易模式去更好地满足客户需求。
1704273577
1704273578
☆第七步:利用可掌握的全部数据源,详细地分析网点的微观环境,比如,利用谷歌地图系统性地检测购物高峰期的交通情况。基于证据的决策是主观态度的前提。
1704273579
1704273580
☆第八步:参考差异化的选择标准,确定正确的选址和经营模式。
1704273581
1704273582
如果此时有人觉得这样做很乏味,宁愿借助智能手机数据去做大数据客流研究,我们觉得这也是可以的,但前提是掌握了相应的技术手段。其他人最好还是优先考虑一下上述智能数据解决方案。
1704273583
1704273584
美国沃尔格林公司借助Excel实现选址优化
1704273585
1704273586
每一个网点都具有区域特性,尤其是药品销售网点。拥有近7000个销售网点的美国药品销售连锁企业沃尔格林公司,在多年前采用了一种独特的方式,对客户的购买数据与住址信息进行了比对研究。结果发现,最大购买距离是两英里!住址距离一个网点超过两英里的客户就基本不会去这个网点买药了。基于这种数据研究结果,沃尔格林公司的企业战略人员可以发现前文提到过的网点发展过程中的市场空白点,也可以发现网点量供过于求的情况。另一方面,研究结论更容易转化为实践,即企业负责人可以更好地去优化在每个网点投入的广告宣传预算。
1704273587
1704273588
沃尔格林公司主要通过在报纸上安插宣传折页进行广告宣传,这些广告折页会随报纸被分发到全国所有有邮政编码覆盖的区域。研究人员利用Excel汇总数据信息,识别出哪些邮政编码覆盖区域与最近的药品销售网点间的距离大于两英里。随后,这些区域的广告宣传预算将被取消。沃尔格林公司通过这种方法,累计节省了500万美元的费用支出,但销售额却丝毫没有受到影响。
1704273589
1704273590
在正确的地点采用正确的销售模式
1704273591
1704273592
在下一章我们会看到,数据是如何使多渠道贸易成为可能并促进其发展的。在此处我们先重点强调,在不同的销售模式下,在与客户直接接触的过程中满足客户需求的能力,是在大多数行业和商业领域建立多渠道战略的前提。迄今为止,尤其是在贸易领域,这一点被强烈地忽视了,因此这反而为我们提供了机遇,使我们有可能在激烈的市场变革中占据竞争优势。在贸易领域,大型的连锁企业可以通过上面八个步骤很清晰地识别出哪些选址对全产品线网点来说是合适的,哪些客户需要购买受监管类药物,哪些位置适合设立快闪店,以及哪些地区的居民喜欢在下班的路上顺便开车去便利店买东西。获得这些认知不仅仅对建立新网点有帮助,对优化现存网点网络也有益处。
1704273593
1704273594
在不同的销售模式下,在与客户直接接触的过程中满足客户需求的能力,是在大多数行业和商业领域建立多渠道战略的前提。
1704273595
1704273596
当然,这也不仅仅适用于分销贸易,对B2B贸易也起作用。在B2B领域,有时更容易发掘这些认知的应用潜力,就比如我们在前文提到的一个智能数据项目中,优化一个中型家装服务供应商的外勤资源那个案例一样。
1704273597
1704273598
“二战”之后,在德国经济奇迹那些年,德国企业经历了持续性的高速增长,几乎没有经历经济萧条的阶段。在这期间,这些企业的分支机构网络也得到了生机勃勃的发展,但那时的发展主要是凭“直觉”。
1704273599
1704273600
借助邮政编码和交易数据信息,在分析客户需求的时候考虑到区域差别化的因素,这种方式与之前的市场渗透截然不同。在一些地区,外勤人数过多,但产生的经济效益少。而在另一些区域,外勤人数又与客户需求潜力不符,不能满足市场竞争的需要。在数据的支撑下分析外勤人员到客户处去的实际路程时间,我们会发现,其实是外勤营销区域的划分有问题。在直线距离规划和路程规划的辅助下,我们可以优化外勤人员的路程选择。通过重新划分外勤营销区域,外勤人员整体的工作饱和度在原基础上可提高20%,人均工作饱和度范围从之前的60%~120%调整为基本每个外勤人员都可达到95%。
1704273601
1704273602
如果我们把数据在图表中进行可视化叠加,我们可以直观地总结出很多有意义的功能整合措施。加上一点儿对路程数据的统计学分析,我们很快就可以得到新的区域划分方案,并重新进行资源配置。不需要关闭任何一个网点,也不用裁减雇员。此外,这也是一个长期的转型方案,企业可以在后续逐步实践。
1704273603
1704273604
无论是设计建设新的网点,还是从根本上重新规划既存网点,都是一项长期的工作,远比在纸面上基于数据提出的优化方案要复杂。如果亲身参与到这项工作中就会发现,在实施过程中存在很多的限制和困难,比如投资额巨大、可支配用地面积有限、审批障碍重重、施工制度限制、长期租赁合同事宜、劳务法律制度要求、不同网点间员工的抵制情绪等。数据只能够辅助我们做出关于网点发展的正确决策,并协助我们通过实验项目获得关于网点具体设计应用于实践的认知。在跨越实践中的种种障碍上,数据能做的十分有限。但是,在优化产品线方面,数据能发挥的作用就很大了。在促进供求关系协调并符合区域性特征方面,数据是必不可少的,在某些情况下,我们甚至需要实时数据来监控供求关系平衡问题。
1704273605
1704273606
1704273607
1704273608
1704273609
实时优化产品线
1704273610
1704273611
当美国气象台预测佛罗里达州将有飓风时,不仅仅是当地的救灾组织做好了应急准备,当地的沃尔玛超市也备足了食品,以应对客户购买需求的变化。超市会立即向恐受灾地区派出货运卡车,这些卡车负责向灾区输送物资商品,如桶装水、压缩液化气筒、煤油灯、保质期较长的牛奶制品、烤面包干等。还有一种家乐氏公司的名叫Poptarts的华夫饼,甜甜的,质地有些黏稠,很多在婴儿潮年代出生的人小时候经常吃这种华夫饼,它会让人回忆起儿时和谐安宁的生活,因此在面临危险的环境下,人们似乎特别爱买这种华夫饼。
1704273612
1704273613
沃尔玛在掌握贸易客户数据信息方面几乎可以与亚马逊比肩,算是世界上数一数二的公司,同时,沃尔玛也是世界上为数不多的真正实践大数据应用的公司之一,在数据应用领域已经取得了极大的竞争优势。一场飓风的来临,只能算是持续优化产品线过程中的一个显性极端事件。沃尔玛公司能够做到实时监测某一地区多变的天气数据,并能够将监测结果与产品销售数据关联分析,随后会将分析结果应用于产品供应及定价决策中。凭借此种做法,一方面,沃尔玛公司具备了极其灵活的物流配送能力,成为20年来最具市场分析能力的市场竞争者之一;另一方面,沃尔玛公司的仓储成本显著降低。
1704273614
1704273615
现阶段,几乎在所有的大型欧洲贸易企业的贸易研究项目中,都能发现一个基本的诉求,那就是尽快掌握像美国贸易企业那样的数字化竞争实力,并用尽可能短的时间,优化自身的产品线,以满足变化了的市场需求。树立这样的项目目标是有原因的:
1704273616
1704273617
智能地优化产品线,能够使我们在数据的辅助下,更好地对标客户需求,提高客户价值,与此同时,还可以优化库存、降低成本、提高市场营销有效性。
1704273618
1704273619
然而,一件事情的结果,往往不如人们预想的那么好,在这件事情上也是这样。如果我们想系统性地优化产品线,成功与否在很大程度上取决于销售和市场研究数据。试点市场和实验室数据显示,由于市场竞争情况的不同,实际的优化结果差异较大。在产品线确实存在优化空间的前提下,地区性的结果差异往往跟市场或企业领导者的经验和市场直觉有关。如果一家贸易企业能够将沃尔玛公司视为自身数字化竞争力的榜样,那自然是好的。但不是每一家企业都能够做到像沃尔玛公司那样,通过系统性地分析交易数据和市场潜力数据,及时(最少按周)调整区域产品种类,(最少每日)调整产品定价,使供求相匹配,同时还能够重点关注某一产品门类的情况。
[
上一页 ]
[ :1.70427357e+09 ]
[
下一页 ]