打字猴:1.704545862e+09
1704545862 经济学之路 [:1704543279]
1704545863 模型类型设定对数据的依赖性
1704545864
1704545865 从上述关于计量经济学模型方法论的讨论中,从人们从事经验实证研究的实践中,都能清楚地感受到,正确地提出可供证实或证伪的假说,即计量经济学理论模型,是十分重要的。对该理论模型进行检验的依据是表征已经发生的经济活动的数据,那么相对于不同类型的数据,应该设定不同类型的理论模型,该理论模型是可以通过经验数据获得证实或证伪的,即模型类型设定对数据存在依赖性。否则,经验检验的数学基础、统计学基础和逻辑学基础将被破坏。从学术刊物发表的论文中看到,大量的错误皆源于此。
1704545866
1704545867 用于宏观和微观计量经济分析的数据可分为三类:截面数据(Crosssectional Data)、时间序列数据(Time-series Data)和平行数据(Panel Data,也译为面板数据、综列数据)。
1704545868
1704545869 对于截面数据,只有当数据是在截面总体中由随机抽样(Stochastic Sampling)得到的样本观测值,并且被解释变量具有连续的随机分布时,才能够将模型类型设定为经典的计量经济学模型。Haavelmo(1943)奠定了它的概率论基础。但是,在实际的经验实证研究中,面对的截面数据经常是非随机抽样得到的,例如截断数据(Truncation Data)、归并数据(Censored Data)、持续时间数据(Duration Data)等;或者是被解释变量不具有连续随机分布的数据,例如离散选择数据(Discrete Choice Data)、计数数据(Count Data)等。对于这样的数据基础,如果仍然采用经典计量经济学的模型设定,错误就不可避免了。20世纪70年代以来,针对这些数据的模型类型已经得到发展并建立了坚实的概率论基础,例如Heckman(1974,1976,1979)和Mcfadden(1974)等所作出的基础性贡献。
1704545870
1704545871 对于时间序列数据,经典计量经济学模型只能建立在平稳时间序列(Stationary Time Series)基础之上,但很可惜,实际的时间序列很少是平稳的。由于宏观经济仍然是我国学者进行经验实证研究的主要领域,而宏观时间序列大量是非平稳的,于是出现了大量的错误。Granger和Newbold(1974)、Engle和Granger(1987)等的贡献解决了非平稳时间序列模型设定的数学基础问题。
1704545872
1704545873 至于平行数据,截面数据和时间序列数据存在的问题同时存在,并且还提出了模型设定的专门问题,例如变截距和变系数问题、随机影响和固定影响问题等,已经发展形成了一套完整的模型方法体系(Hsiao,2003)。只有依据新的模型方法体系设定理论模型,才能进行可靠的经验实证。
1704545874
1704545875 经济学之路 [:1704543280]
1704545876 经典模型总体设定的先验理论导向
1704545877
1704545878 当模型类型以数据为基础被决定后,首先需要进行模型总体设定。以单方程计量经济学模型为例,给定任何被解释变量,要对其进行完全的解释,需考虑所有对其有直接影响的因素集。按照与被解释变量关联关系的恒常性和显著性两个维度,可以分解为显著的恒常性因素集、显著的偶然性因素集和无数单独影响可以忽略的非显著因素集。这里的“恒常性”,或者覆盖所有的截面个体,或者覆盖时间序列的所有时点。
1704545879
1704545880 计量经济学模型的任务是找到被解释变量与恒常的显著性因素之间的关联关系,即所谓的经济规律。对于显著的偶然因素,通过数据诊断发现存在这些因素的“奇异点”,然后通过技术手段消除其影响。但对于非显著因素,无论是恒常性还是偶然性的,尽管它们的单独影响可以忽略不计,却不能简单忽略掉无数非显著因素的影响。Greene(2000)指出,没有什么模型可以期望处理经济现实的无数偶然因素,因此在经验模型中纳入随机要素是必须的,被解释变量的观察值不仅要归于已经清楚了解的变量,也要考虑来自人们并不清楚了解的偶然性和无数微弱因素的影响。
1704545881
1704545882 因此,模型总体设定的实际过程将主要包括三个部分:一是围绕被解释变量,界定影响因素集,并进行有效分解,得到显著的恒常性因素集、显著的偶然性因素集与非显著因素集,将显著的恒常性因素作为解释变量;二是确定被解释变量和解释变量的函数形式以及在该函数形式下的关系参数;三是确定随机扰动项的概率分布特性和相应的概率分布参数,最终得到待估总体模型。
1704545883
1704545884 经典计量经济学模型是指20世纪30年代至70年代发展的计量经济学理论方法体系,它是基于截面数据建构的。截面数据的关键特征是,数据来自于随机抽样,数据顺序与计量分析无关。随机抽样隐含了待界定的特定总体。在经典的计量经济学模型中,尽管模型的经济理论基础一直被很多计量经济学者给予足够的关注,但是设定经济理论通常被认为是理论经济学的任务,而模型估计和模型检验方法才被认为是计量经济学的主要任务。经济理论可以被认为是嵌入计量经济学的,相对经验数据而言具有先验性,因此经典计量经济学模型通常被认为是先验理论导向的。
1704545885
1704545886 以先验理论导向实现的模型总体设定,至少存在以下问题。第一,对于同一个研究对象,不同的研究者依据不同的先验理论,就会设定不同的模型。例如,以居民消费为研究对象,分别依据绝对收入消费理论、相对收入消费理论、持久收入消费理论、生命周期消费理论以及合理预期消费理论,就会选择不同的解释变量和不同的函数形式,设定不同的居民消费总体模型。第二,模型具有结构关系不变性,认为先验的理论具有“覆盖性”,对于所有的截面个体或者时点普遍适用,模型所表现的变量之间的结构关系对于所有的截面个体或者时点都是不变的。第三,破坏了模型随机扰动项的“源生性”,随机扰动项可能违背Gauss-Markov假设和正态性假设,进而建立在这些假设基础上的统计推断不具有可靠性。
1704545887
1704545888 经典计量经济学模型在经典Gauss-Markov假设下,可以采用普通最小二乘法(或极大似然法或贝叶斯方法)得到线性模型参数的无偏、有效的估计量。这样,在经典假设下,基于来自总体的一个随机抽样,按照最大可能性或最小偏差的统计法则,对总体原型模型参数进行统计推断,得到估计的总体模型。由于抽样的随机性,统计推断确定的参数和总体模型方程都具有随机性。因此,计量经济学知识是统计推断确定的或然知识。这样确定的或然知识,非常务实地回避了休谟的质疑——人类从经验到的过去、局部、特殊如何推论到没有经验到的未来、整体、一般。计量经济学并没有试图找到绝对知识,只是基于抽样对总体原型进行估计,得到关于总体原型的或然知识。但是,计量经济学并不因为放弃了绝对知识,而转向了不可知论。只要Gauss-Markov假设隐含的总体模型方程足够现实,按照特定的统计法则估计的总体参数将是无偏、有效、一致的;只要样本容量足够大,估计得到的总体模型方程与自在的原型方程的偏差是可以忽略的。因此,按照计量分析规则建立的知识是可资依赖的,这就规避了陷入不可知论的危险。但是,上述先验理论导向的模型总体设定存在的问题,其直接后果正是导致对经典Gauss-Markov假设的违背。
1704545889
1704545890 基于随机抽样截面数据建构的经典计量经济学模型被大量地应用于基于时间序列数据的宏观经济分析,并迅速从单方程模型发展到联立方程模型,特别是考利斯委员会(Cowles Commission)的资助,使得联立计量经济学模型的设定、识别和估计问题产生革命性的突破,形成了经典宏观计量经济学模型理论体系。但是,从J. Tinbergen到L. R. Klein,都是以当时占主导地位的宏观经济理论为导向进行模型总体设定的。它所带来的问题除了上述的三条外,还必须加上两条:第四,如果模型总体中包含的时间序列是非平稳的,将导致随机扰动项违背Gauss-Markov假设,进一步导致模型精密的数学基础遭到破坏;第五,时间序列数据的序列相关性破坏了经典模型赖以建立的关键假定——随机抽样假定。
1704545891
1704545892 经典模型对20世纪70年代的经济衰退和滞胀的预测和政策分析失效,引来了著名的“卢卡斯批判”。Lucas(1976)指出使用计量经济模型预测未来经济政策的变化所产生的效用是不可信的,提出了结构模型参数是否随时间变化的问题。Sargent(1976)以货币政策为例,重新解析了Lucas批判,认为结构模型对于评价政策似乎是无能为力的。Sims(1980)指出,为使结构方程可以识别而施加了许多约束,而这些约束是不可信的,建议采用向量自回归(VAR)模型而避免结构约束问题。所有这些,从表面上看是对结构模型和模型结构不变性的批判,而实质上是对模型总体设定先验理论导向的批判。卢卡斯批判揭示的经典模型结构参数显著的时变性问题,彰显了先验理论导向的致命症结,这直接导致更多的学者转向数据关系导向。
1704545893
1704545894 经济学之路 [:1704543281]
1704545895 时间序列分析模型的数据导向
1704545896
1704545897 从总体原型的自然属性来看,有两种基本总体原型:一是静态的总体原型,主要是经济因素之间不随时间演变的静态平衡结构,力图揭示经济系统的平衡关系法则,对应的总体是不随时间变化的静态随机分布,通常利用截面数据来估计总体模型参数;二是动态的总体原型,主要是持续演变的经济因素之间的动态平衡结构,力图揭示经济系统的演变法则,对应的总体是在时间维度上持续发生的随机过程,通常利用时间序列数据来估计总体模型参数。
1704545898
1704545899 尽管基于截面数据的经典模型同样要面临先验理论与经济现实的脱节,而被迫更多地转而依赖数据关系,但由于时间序列数据的非平稳性和序列相关性,从时间序列的计量分析可以更清楚地看到计量经济学从先验理论导向转向数据关系导向的逻辑和现实需要。
1704545900
1704545901 时间序列数据产生于特定的随机过程,即某个或某组随机变量(在任意时点随机取值)随时间随机演变的过程。因此,基于时间序列数据的动态分析与基于截面数据的静态分析具有根本的不同。对时间序列分析而言,需正视下列基本问题(冯燮刚、李子奈,2006a)。第一,时间序列分析的基本假设——时间序列性,过去可以影响未来,而不是相反(Wooldridge,2003)——这似乎是没有多少争议的。但是决定未来的过去的结构究竟是什么呢?勾画过去的结构化框架很大程度上决定了时间序列分析知识的可靠性。至少要包括状态和趋势,才能相对完整地勾画过去的结构化框架:状态是变量在特定因素组合作用的积累,而趋势则由引起状态变化的特定因素组合在当前的状态决定。第二,产生时间序列数据的随机过程的动力学结构的识别。任何一个时间序列数据的数值都将由两部分来组成,一是由经济系统动力学关系导致的决定性部分,二是由经济系统受到的随机扰动导致的随机性部分。这就使对时间序列的计量分析面临与截面分析同样的总体界定问题。第三,数据的时间序列性破坏了计量经济学静态模型的随机抽样假定,取消了样本点之间的独立性,样本点将发生序列相关。如果序列相关性不能足够快地趋于零,在统计推断中发挥关键作用的大数定律、中心极限定理等极限法则将缺乏应用基础。可以证明,对协方差平稳序列,如果满足渐进不相关(两个样本点的相关性随着时间间隔的增加而收敛到零),则不仅适用大数定律,也适用中心极限定理(Hamilton,1994)。因此,对满足渐进不相关的协方差平稳序列,可以适用基于截面数据的统计推断方法,建立时间序列模型。这样,协方差平稳性和渐进不相关性在时间序列分析中扮演了一个非常重要的角色,为时间序列分析适用大数定律和中心极限定理创造了条件,替代了截面数据分析中的随机抽样假定(Wooldridge,2003)。
1704545902
1704545903 但是经济现实中的随机过程都很难符合上述标准条件。在不适用大数定律和中心极限定理的情况下,经典模型的计量分析常会产生欺骗性的结论。Hendry(1998)对非平稳随机变量回归的系统分析表明,无论随机变量间是否存在因果关系,这些随机变量的不平稳性越高,回归方程拟合程度就越高,发生谬误回归的可能就越大。这是基于时间序列进行统计推断必须跨越的障碍。对包含非平稳随机变量的模型的谬误回归,引出两个问题:一是是否存在这样的可能,可以统计确定具有恒常关系的非平稳随机变量之间的模型;二是如何处理非平稳随机过程,为适用统计方法建立模型创造条件。对后者,通过差分法可以把不平稳的高阶单整(integration)过程转化为平稳的零阶单整过程。对前者,即是随机过程协整(cointegration)。于是,单位根检验(unit root test)、协整检验和建立误差修正模型(error correction model)成为数据导向模型总体设定的主要任务。
1704545904
1704545905 综上可见,对时间序列的非平稳性的识别与处理就构成了数据关系转向的主要内容;在非平稳随机过程之间,建立恒常的数据关系,成为数据关系导向中时间序列分析的主要目标。这样带来的新的问题是,计量分析的理论基础——产生时间序列数据的动力学过程或总体界定反而被忽略了。脱离产生数据的动力学过程谈随机过程的平稳性是没有意义的。就协整关系而言,有几点值得深思:第一,随机过程的数据协整关系是结果,而不是原因;第二,由于经济现实的系统关联性,满足统计协整关系的变量很多,但是可以纳入基于动力学关系建立的动态均衡模型的变量并不多。因此,协整关系检验是确定模型动态相容的必要条件,但却不是充分条件。必须建立在动力学关系分析基础之上,才能有效发挥协整检验的作用。
1704545906
1704545907 因此,需要正确认识、对待计量经济学模型的数据关系导向。在充分分析总体原型、正确设定因素组合之后,由于对实体之间的动力学关系认识永远难以达到完备的境界,人们很难准确地确定模型的函数形式。单位根检验和协整检验理论,乃至整个计量经济学方法,给出了探索特定因素组函数关系的有效工具。但是在此过程中,实体之间的动力学关系分析仍然是必要的。
1704545908
1704545909 经济学之路 [:1704543282]
1704545910 模型总体设定的关系论导向
1704545911
[ 上一页 ]  [ :1.704545862e+09 ]  [ 下一页 ]