打字猴:1.70539799e+09
1705397990
1705397991 空气是一种气态物质,它的重量影响着气压。如果能在地球表面切取16.39立方厘米的空气并连同其上方所有空气一起称重,那么在海平面标准状况下,其总重量应该大约为6.67千克。实际上,如果你想到该空气柱的尺度,就不会觉得它很重——2.54厘米×2.54厘米×9.7千米,或大约6.2立方米。然而,距地面4.8千米以上的空气重量远小于6.67千克,因为这里的空气相对较少。所以,很显然,在越接近地球表面处,空气就越重,而气压也越高。
1705397992
1705397993 这是一条自然规律,即对于同样体积的冷空气和热空气来说,冷空气比较稠密。这条规律的例证就是充填了较轻气体的热气球能够升空。寒冷早晨以空气相对较重为特征。但是到了下午,温度上升,空气就变得较轻。
1705397994
1705397995 各种类型的气压计可用来记录气压的变化。以毫米汞柱② 或毫巴表示的气压读数,连同所记录的温度,都是每一份气象记录的标准组成部分。某一给定地点的气压随着地面变热或变冷而变化。气压计记录着空气变热而发生的气压下降和空气变凉而发生的气压上升。
1705397996
1705397997 为了使空气运动对天气的影响可视化,可以将空气设想为两种密度不同的液体(分别代表轻空气和重空气),例如汽油和水。如果将液体同时放入一个容器中,较轻的液体将移动到上方而较重的液体移动到下方,请以此来想象空气的垂直运动。较重的液体水平地沿着容器底部扩散,在各处形成同样的厚度。这种流动就代表着空气或风在地球表面的水平运动。空气力图使由于变热和变冷过程所产生的不平衡气压达到平衡状态。空气从重(冷)空气位置向轻(暖)空气位置运动。因此,两个地方之间的气压差异越大,风就越大。
1705397998
1705397999 地理学与生活(插图第11版) [:1705395319]
1705398000 气压梯度力
1705398001
1705398002 由于地球表面自然环境——水、积雪、深绿色的森林、城市等,以及影响能量吸收和保持的其他因素的差异,逐渐形成了高、低气压带。有时,这些高、低气压带覆盖了整个大陆。但是,它们通常要小得多——宽数百千米,这类地区内部,短距离内会有微小的差异。当气压差发生在两个区域之间,气压梯度力(pressure gradient force)就使空气从高压区域吹向低压区域。
1705398003
1705398004 为了平衡已形成的气压差,空气要从较重的高压区域流向低压区域。较重的空气停留在近地表处,当它移动时就产生了风,并迫使暖空气向上运动。风速同气压差成正比。由气压差引起的风导致气流从高压带流到低压带。如果高、低气压带之间的距离较短,气压梯度就急剧升降,风速就大。当不同的气压带彼此相距较远时,压差不大,空气的运动就比较和缓。
1705398005
1705398006 地理学与生活(插图第11版) [:1705395320]
1705398007 对流系统
1705398008
1705398009 房间内接近地板处的温度要低于天花板处,因为暖空气上升而冷空气下降。下降的冷空气和上升的暖空气的环流运动被称为对流(convection)(图4.12)。在地面受热的暖空气上升,并被上面的冷空气所替代,就产生了对流风系统(convectional wind system)。
1705398010
1705398011
1705398012
1705398013
1705398014 图 4.12 对流系统。下降的冷空气流向低压处。降水最常发生在低压带,当暖空气上升时,空气变冷,并且空气的水分变得过饱和,形成降水。
1705398015
1705398016 地理学与生活(插图第11版) [:1705395321]
1705398017 陆风与海风
1705398018
1705398019 对流系统的最好例子就是陆风(land breeze)与海风(sea breeze)(图4.13[a])。在接近大片水域的地方,陆地与水体之间白天的受热差异巨大。结果,陆地上的较暖空气垂直上升,只能被来自海上的较冷空气所替代。在夜里,情况正好相反。海水比陆地温暖,因为陆地上大部分热量已经被逆辐射散失,结果就有陆风吹向海洋。这两种风使海岸带气候温暖,十分宜人。
1705398020
1705398021
1705398022
1705398023
1705398024 图 4.13 由于受热和变冷的差异而发生的对流风效应。(a)陆风和海风;(b)山风和谷风。
1705398025
1705398026 地理学与生活(插图第11版) [:1705395322]
1705398027 山风和谷风
1705398028
1705398029 聚集在山区雪地上的沉重的冷空气受重力作用而下降到较低的谷地,如图4.13(b)所示。结果,谷地变得比坡地寒冷得多,进而发生逆温。因为山风(mountain breeze)带来的冷空气会在谷地造成霜冻,所以坡地是山区农业最适宜的地方。在工业集中、人烟稠密的狭窄谷地,空气污染特别危险。山风通常在夜晚出现,而谷风(valley breeze)由于是山区暖空气沿着坡地向上运动产生的,所以通常出现在白天。加利福尼亚州南部的峡谷是强烈的山风与谷风活动区。此外,那里在干旱季节还是林火蔓延的危险区。
1705398030
1705398031 地理学与生活(插图第11版) [:1705395323]
1705398032 科里奥利效应
1705398033
1705398034 在从高压向低压运动的过程中,风的前进方向在北半球向右偏转,而在南半球向左偏转。这种偏转作用被称为科里奥利效应(Coriolis effect)。如果没有这种效应,风将严格地沿着特定的气压梯度的方向运动。
1705398035
1705398036 用一个熟悉的例子来说明科里奥利效应对风的影响。设想有一排溜冰者彼此手拉手做圆形滑行,其中一个溜冰者距离圆心最近。这个溜冰者缓慢地旋转,而最外侧的溜冰者为了保持直线队形,必须非常快速地滑行。地球以类似的方式围绕地轴旋转,赤道地区就要用比两极地区快得多的速度旋转。
1705398037
1705398038 接下来,假设位于圆心的溜冰者直接向这一排末端的溜冰者扔一个球,当球到达时,它将从溜冰者的后面穿过。如果溜冰者沿逆时针方向滑行——如同从北极位置观察地球运动那样——位处北极点上的人看来皮球好像是传向外侧溜冰者的右方。如果溜冰者沿顺指针方向滑行——如同从南极位置观察地球运动那样——则皮球好像传向左方。因为空气(就像这个皮球)并非牢牢地附着在地球上,因此也仿佛发生偏转。空气保持自己的运动方向,但是地面从空气下面移开。由于空气的位置是以它相对于地面的表面测量的,因此空气就好像偏离了自己的直线路径。
1705398039
[ 上一页 ]  [ :1.70539799e+09 ]  [ 下一页 ]