打字猴:1.705580235e+09
1705580235 当保罗·爱多士的父亲给他讲解欧几里得关于素数无限性的证明时,他比罗素还小1岁。这使他终身为之着迷。这个证明,可以说是整个数学中最优美的证明之一,当然肯定是属于“天书”的证明之一。欧几里得的方法类似于毕达哥拉斯用来证明2的平方根是无理数的方法。他首先假设与他想要证明的命题相反的结论,然后看这会将他引向何处。换句话说,欧几里得假设存在一个最大的素数,记之为PN(如果使用PN这样的未知量使你感到不舒服,假想最大的素数是7或11,或其他某个小素数,这会帮助你澄清逻辑思路)。如果这一假设导致矛盾,那么逻辑结论必然是假设不对:不存在最大素数。
1705580236
1705580237 证明的第一步是将所有的素数相乘而得到一个大数:
1705580238
1705580239 A=2×3×5×7×11×……×PN
1705580240
1705580241 A显然可以被每一个素数整除,这正是我们构造它的原则。现在将A加上1,然后考察所得的结果数,我们记之为P:
1705580242
1705580243 P=A+1=(2×3×5×7×11×……×PN)+1
1705580244
1705580245 P或者是素数,或者不是素数,二者必居其一。如果P是我们得到的素数,由于P显然大于PN,这与假设PN是最大的素数相矛盾。
1705580246
1705580247 每个整数要么是素数,要么是素数的乘积。因此如果P不是素数的话它必能被某个素数整除。用2,3,5,7或其他任何一个不大于PN的素数除P(P=A+1),余数显然为1,这是因为A作为所有这些素数的乘积必然能被它们中任一个整除。于是如果P不是素数,它必定能被大于Pn的一个素数整除。但是我们已经假定没有这样的素数,因此假设P不是素数同样导致矛盾。所以不存在最大的素数,素数的个数是无限的。
1705580248
1705580249 如果你不厌其烦地读了上述证明(我希望你确实读了),你可能会感到它真是步步为营。欧几里得的传家宝之一就是精练紧凑的数学推理。总得费时间琢磨分析,没有人能一目十行地阅读数学。即使对那些最流利的“演说者”来说,它也始终是一门外语。爱德华·罗斯坦曾简述原先由普林斯顿老一辈哲学家保罗·贝纳塞拉夫(Paul Benaceraf)提出的这样一个疑难:“如果数学知识超越时空,那么从深居时空之中的地球王国怎样才能得到它呢?”人类的大脑生而能做简单的算术和几何,其余则是后天的发明与创造。数学语言与方法在某种意义上是武装地球智慧生命使之能遨游数学知识宇宙的技术,其难以驾驭是不足为奇的。
1705580250
1705580251 爱多士的父亲在使他相信素数有无限多之后,接着又向他展示了另一个漂亮的证明,这不仅促使他终身迷上了素数,而且激发了他后来的一些最著名的结果。父亲问道,两个相邻素数的间隔可以有多远?因为所有大于2的素数都是奇数(2必须刨去,因为按定义,素数就是能被1和其自身整除的数),所以两个大于2的相邻素数之差必定是一个偶数(可用某些小的素数来检验)。这个偶数能有多大呢?爱多士的父亲告诉他说可以找出任意长的整数区间,其中完全没有素数。
1705580252
1705580253 例如,你想找出100个连续的合数(即非素数)。首先将从1到101所有的整数相乘,即1×2×3×…×101。数学家们称这个数为101阶乘,并记之为101!,这里惊叹号既是标准记号,同时也提示阶乘很可能是大得惊人的数字。101!就是一个有160位数字的数,约等于9.4×10159。与101!有关的一个有用的事实是:它是从1到101每一个整数的倍数。因为101!是2的倍数,它加上2所得的数也是2的倍数;101!是3的倍数,它加上3所得的数也是3的倍数。依次类推直至101。于是,从101!+2到101!+101这100个数中没有一个是素数。这种方法——数学家称之为构造方法——可以用来发现任意长的合整数区间。你想要1 000个相继的合数吗?很简单,从1 001!+2开始,到1 001!+1 001为止。不过请不要劳神把这些数写出来,因为它们都是2 568位长的数!
1705580254
1705580255 素数却又可以互相非常靠近。像素数29和31,中间只隔了一个数,这样一对素数被称为孪生素数。一个著名的未决问题是:是否有无限多对孪生素数?目前已知最大的孪生素数是1994年借助于超级计算机发现的,这是一对4 932位长的数——697 053 813×216352±1。“很清楚是有无限多对孪生素数,但我想在最近的将来没有人能证明这一结果。”每当讲解数学难题时,爱多士总喜欢这样说,孪生素数猜想回绝了所有证明它的尝试,大多数数学家认为这样一个证明绝不会很快出现。
1705580256
1705580257 综上所述,一方面素数之间可以相隔任意远,另一方面孪生素数又可能有无限多,这足以说明素数分布是多么不可捉摸!没有任何神奇的公式可以确切地告诉你哪些数是素数,哪些数不是素数。判别一个数是不是素数唯一可靠的办法是费力地用比它小的每个素数逐个相除。(4)高斯曾宣称,判定一个数是素数还是合数的问题是“算术中最重要也是最有用的问题之一……这门科学自身的尊严要求我们探索一切可能的方法来解决这个如此优美、如此著名的问题”。
1705580258
1705580259 从父亲那儿听来的这些关于素数的证明与猜想,在年仅10岁的保罗·爱多士心中激起了对素数及其分布的终身迷恋,这将引出20世纪最优美、最出人意料的一些数学结果。第一个这样的结果7年后就问世了。然而,父亲的课程最重要的结果是使保罗意识到自己将会成为一名数学家,虽然他同样迷恋天上的星星,并认为自己也可能成为一名天文学家。
1705580260
1705580261 在11岁时,爱多士才第一次进了学校,上的是塔瓦茨梅泽街预科学校六年级。不管严格的课堂纪律使他独立的心智忍受了怎样的压抑,爱多士仍然竭力争取在班上名列前茅。他唯一没能得到A的科目是绘画,他这门课的成绩是B。“学习对我来说并不是一件难事。”他后来回忆说。他最喜欢的课是历史,并且终身保持了这种兴趣。
1705580262
1705580263 对爱多士来说,数学不仅仅是学校的一门课程。爱多士进入预科学校的那一年,也是他开始注目《中学数学杂志》(Középiskolai Mathematikai Lapok)之日,这份杂志简称KöMal,是一位来自杰尔(Györ)、名叫丹尼尔·阿拉尼(Dániel Arany)的杰出而年轻的中学数学教师在1894年创办的。正如阿拉尼所说,这份杂志的目的是要“为教师和学生提供一本丰富的习题集”。三年后该杂志由拉斯洛·拉茨接办,拉茨当时是11岁的冯·诺伊曼和12岁的尤金·魏格纳的“神奇”老师。在拉茨指导下,KöMal由一份只比数学习题集层次稍高的刊物发展成了一块非常成功的培育数学人才的园地。
1705580264
1705580265 每个月的KöMal都要刊登当时一些著名数学家和数学教育家的文章。但是除了这些有趣的文章,真正有吸引力的是那些竞赛题。在收到每月一期的KöMal后,全匈牙利有才华的数学学生就会忙碌起来,尽其所能对这些设计得很高明、并且在难度上按不同年龄分组的问题做出最漂亮的解答。答题人将他们的解答寄回KöMal,那里有一个志愿审查组给这些答卷评分。最好的解答将在KöMal上发表,这是一种可能激发了爱多士对数学“天书”的幻想的实践。到每年年底,各轮解题竞赛优胜者的照片将刊登出来。多年以后,爱多士的一位解题伙伴马尔塔·斯韦德(Marta Svéd)回忆说:“解题是最主要的事。回报是,如果作为一名勤奋的解题者,你的照片出现在年底的杂志上,你会感到仿佛登上了世界之巅。”这种方法使全匈牙利的天才学生变得相互知名,并认为自己已开始成为数学家,成为数学界的一部分。诺贝尔经济学奖得主约翰·豪尔绍尼(John Harsanyi),物理学家拉斯洛·蒂萨(László Tisza)和费伦茨·梅泽伊(Ferenc Mezei),以及数学家乔治·波利亚(George Polya)和加布里埃尔·塞戈(Gabriel Szegö)等杰出的科学家,早年都是KöMal解题竞赛的优胜者。
1705580266
1705580267 在爱多士拿起KöMal 40年之后,另一位神童,爱多士的门生拉斯洛·洛瓦斯(Lászlo Lovász)第一次看到了这份杂志。“真是一见钟情。”洛瓦斯回忆说。这位八年级学生捡起的这期KöMal包含有当时已成为世界著名数学家但还继续给KöMal投稿的保罗·爱多士的一篇文章。“这篇文章我至少读了20遍,”洛瓦斯在KöMal 100周年纪念专刊上写道,“当我明白我能够理解伟大的数学家在想些什么时,我感到无比惊喜和激动。”洛瓦斯对KöMal的热爱为这杂志的许多读者所共享。当乔治·塞凯赖什(George Szekeres)在二战期间被迫逃离匈牙利时,曾想方设法随身携带着他收藏的笨重的过刊合订本,它跟着他从新加坡辗转到澳大利亚,至今仍在他的书架上占据着一席风光之地。
1705580268
1705580269 爱多士多产的数学生涯可以说正是从他在KöMal上发表题解开始的,最早的一篇出现在1926年12月。爱多士与另一位当时尚未谋面的学生保罗·图兰(Paul Turán)是仅有的两位能解出某道难题的人,这样就产生了爱多士在与他人的长期合作生涯中第一篇联合发表的作品。图兰后来成为爱多士最亲密的朋友和最重要的合作者之一。1926年爱多士的照片第一次出现在优胜解题者之中。这张照片也是他在公共汽车月票上反复使用的。照片中的爱多士身着开领衬衣,双目直视相机,面无笑容,非常严肃。他看起来比其他优胜者年龄要小,而大多数优胜者则衣冠整齐,衣领上浆,还系着领结,不过表情同样严肃。在这一年所有的优胜者中只有一位女性,这位留一头短发的年轻女子名叫埃丝特·克莱因(Esther Klein),她后来也成为爱多士的终身好友,并为他最重要和最有影响的论文之一提供了启示。
1705580270
1705580271 爱多士在塔瓦茨梅泽学校待了两年,接着回家自学了一年,然后为了结束高中阶段的学习,他又进了圣·伊斯万预科学校,他父亲是这所中学的数学和物理教师。1920年,随着匈牙利公社的垮台以及《特里亚农条约》导致的匈牙利分裂,反犹主义甚嚣尘上,一个所谓的“名额控制法”将大学中犹太人的入学率限制在录取总数的6%。犹太大学生越来越感到惶惑不安。“我12岁时就知道我迟早得离开匈牙利,因为我是一个犹太人。”爱多士后来这样说。不过在此之前,尽管有“名额控制法”和暴力反犹活动,爱多士从圣伊斯万学校毕业后还是进了布达佩斯科学大学。
1705580272
1705580273 在大学里爱多士很快就成为10余名青年数学家的中心人物。这些人中的大多数他过去只是通过KöMal上模糊的照片得知,现在才与他们当面结识,今后伴随他一生的数学讨论与数学友谊从此开始。同学们之间的讨论很快就越出课堂,来到大街上,佩斯城内咖啡馆里,或是在布达市区美丽葱郁的山丘之间的漫步,他们学会了不用纸和笔研究数学。然而,他们最喜欢的还是在布达佩斯城市公园内一座雕像下的聚会。
1705580274
1705580275 城市公园位于佩斯城中央,布达佩斯许多市民都喜欢在那里消磨午后的休闲时光。公园处在笔直而宽阔的安德拉西大街尽头。安德拉西大街是香榭丽舍大街的仿制品,而城市公园建造则受到了布洛涅森林公园的启发。城市公园与沿安德拉西大街通向公园的欧洲第一条地铁都是1896年匈牙利千年庆典工程的一部分。安德拉西大街与城市公园都比它们的法国原型要略微短些;同时前者不及香榭丽舍大街宽,而后者则比布洛涅公园多了些尘土。尽管如此,夏日的午后,人们还是喜欢上这儿来划船,参观动物园和马戏团,或是围绕着装饰性的城堡散步。冬天则可以在湖上滑冰。而无论冬夏,在一战后的数十年间,只要你知道上哪儿找的话,你都可以加入到一群青年男女中去,跟他们一起进行严肃的数学游戏。
1705580276
1705580277 城市公园里那座瓦依达胡尼亚城堡,是一座外观凌乱的混合式建筑,一部体现各种匈牙利建筑风格的百科全书。在它的鹅卵石庭院中央,有一座巨大的青铜人物座像,雕塑中的人物脸部完全被厚袍上的头巾所遮掩,目光却显然注视着在他膝上铺开的一本大书,一本他正在孜孜不倦地撰写的著作。这是一座无名氏雕像,象征了一位想象中的中世纪匈牙利编年史作者。这座无名氏雕像是一个理想的聚会场所:容易找到,又远离闹区;这儿绿树成荫,周围有一圈长凳。在20世纪30年代初,爱多士每周都有一两次从他离公园不远的住所步行去这座雕像会见他的大学同学。他们在那里无话不谈,但主要的话题是数学。大家在长凳上坐下,无名氏雕像梦幻般地浮现在上方。他们模仿无名雕像的姿势,凝神俯视着膝上打开的笔记本。当这种非正式的讨论班刚刚开始时,无论是爱多士还是他的朋友们,都还没有在专业杂志上发表过一篇文章,他们都像无名氏一样默默无闻,虽然情况不久就有了变化。
1705580278
1705580279 即使没有爱多士,这也是一群绝不比其他地方逊色的青年数学家。十来名大学生,定期在公园里聚会解决数学问题,但却从来没有把自己看成一个小组,小组这个称呼后来才出现。其中最著名的成员有保罗·图兰、蒂博尔·高洛伊(Tibor Gallai)和乔治·塞凯赖什,他们后来都成了第一流的数学家,并且都是爱多士最早的合作者。
1705580280
1705580281 这些在雕像前聚会的数学家全是犹太人,虽然他们自己很少意识到这一事实。多年后,安德鲁·瓦佐尼在与爱多士的一次谈话中回忆往事时提到,他“感到在布达佩斯的非犹太人与犹太人之间隔着一堵墙”。爱多士说他从来没有注意到这一点,于是瓦佐尼便请他举几个当时结交过的非犹太人朋友的名字。爱多士一个也说不出来。“我从未想过这方面的问题。”他承认说。
1705580282
1705580283 进大学后不久,爱多士就做出了他的第一个重要的数学贡献。他父亲向他讲解的素数的奇异分布,将爱多士引进了数论这个与整数性质有关的数学领域。在这方面爱多士并非独一无二,大多数数学家最初步入数学领域,都是受到优美的数论结果和富有魅力的数论问题吸引。数学中许多其他分支对门外汉却并不那么殷勤好客。例如在代数拓扑和群论中,你可能会花费数年的时间才能理解其中的问题,更不用说要掌握解决这些问题的技巧与方法了。另一方面,数论学家们感兴趣的问题,有许多却只需具备简单的算术知识就能理解,虽然这些问题解决起来极端困难。一个典型的例子是贝特朗假设(5),爱多士的第一篇论文,讨论的正是这一假设。
1705580284
[ 上一页 ]  [ :1.705580235e+09 ]  [ 下一页 ]