打字猴:1.707605027e+09
1707605027
1707605028 毫无疑问,我非常喜欢《星际迷航:原初系列》,这部经典的科幻作品吸引了包括我在内的很多人喜爱上了科学。然而它还不算是最好的一部。当它的下一部《星际迷航:下一代》播出的时候,包括我在内的很多人当时还很年轻,我承认这部片子才是《星际迷航》系列里我的最爱。
1707605029
1707605030 和第一部相比,第二部实在是有太多进步了。这部电视剧的成像技术在当时非常超前。我要承认的是,它不如《2001太空漫游》,其中的特效技术在今天看来严重不合格,但在那个时候,《星际迷航:下一代》开了电视剧制作的先河——你在电视上看到的图像基本上和你在电影里看到的没有差别。同时,对比第一部,这部的剧本绝对有质的飞跃,技术也更成熟,饰演过莎士比亚戏剧的演员帕特里克·斯图尔特的参演让整个电视剧有种不一样的感觉(平心而论,远比詹姆斯·柯克更出色),斯图尔特扮演的星舰船长有种与生俱来的运筹帷幄的风范,也让整部剧有了质感。
1707605031
1707605032 但不是所有出现在《星际迷航:下一代》里的技术都是可行的,一个被过度使用的概念就是全息甲板。全息甲板是计算机和真实世界的桥梁,把虚拟现实和物理世界联系在一起,用“力场”(force field)模拟真实的物体,让“参与者”可以体验非洲大草原或19世纪的酒吧,或者就像《星际迷航》里的生化人数据(Data)做的那样,和科学家或电影迷扮演的牛顿、爱因斯坦和霍金一起玩扑克。
1707605033
1707605034 像很多科幻作品一样,《星际迷航》从第一部开始就不出所料地使用了护盾和牵引光束。我们过一会儿再讨论实现全息甲板的困难,先来说说这其中的原理。力场、护盾和牵引光束都是不需要介质操控我们周围物体的常用科幻方法,这些都真实可行吗?还是仅仅存在于科幻作品中?
1707605035
1707605036 力场和护盾好像在过去的几十年里是科幻作品的标配,所以大部分人都知道它们是什么,即便它们都是虚构的。我年轻的时候最喜欢的科幻小说是爱德华·埃尔默·史密斯于20世纪50年代开始创作的太空歌剧《透镜人》(Lensman)系列。史密斯的早期作品《宇宙云雀号》(Skylark of Space)系列定义了太空歌剧流派,这里面出现的超自然力量和漫画书里的超级英雄一样,对当时还是青少年的我来说非常有吸引力。在史密斯的作品中,力场会在来袭火力中承受巨大的压力,形成保护罩,同时发出灼热的金属一样的光芒,直到最终被击穿,致使已经毫无防御能力的舰船被强大的激光束摧毁。
1707605037
1707605038 《星际迷航》中的视觉效果也许提升了一些,但是其中的护盾基本上还是基于史密斯的理念。科幻作品中的绝大多数宇宙飞船——包括《星际迷航》中用于维护和平的联邦船——都具有战斗模块。即使不参与战斗,飞船也会因为在太空中的超高速飞行而需要一些保护。诚然,我们用没有类似保护的飞船把人类送上了月球,现在也在向火星进发,但部分原因是我们的飞船太慢了。去外太空星球或者更远地方的高速飞船,肯定需要类似于护盾装置的保护。
1707605039
1707605040 如果以电影为模型,那么进行空间旅行的飞行员要面对的最复杂的情况就是穿越小行星场,因为在这个过程中他们需要持续躲避密集的石头。事实上,如果飞船的速度不是太快,穿越小行星场就算不上困难——至少穿越太阳系的小行星场不太难。太阳系有许多小行星,最大的谷神星直径有950千米(590英里),而小的则如颗粒状的宇宙尘埃。小行星场在广阔的宇宙中呈分散状态,如果你进入太空,坐在某个小行星旁边,那你看见另一个小行星的概率微乎其微——小行星之间隔着好几公里,而不是像我们以为的呈迷宫状。不负责任地说,我怀疑电影里的小行星场是为了迎合衍生的那些电子游戏才被专门设计成那样的。
1707605041
1707605042 当飞船穿越小行星场,开启巡航模式时,真正的问题才开始出现。行星、彗星和类似的星体很容易被雷达检测到,因此飞船可以轻松躲避这些星体的撞击,但是太空中还有许多难以避免的危险物体。尘埃的撞击就非常危险,在高速状态下,就算是特别小的颗粒也可以撞毁几乎任何东西。另外,当宇宙飞船穿越气体云,甚至更危险的高能宇宙射线(太空中如洪水一样的带电粒子)的时候,碰撞会产生极其危险的射线。因此,飞船需要某种形式的保护,比如力场。
1707605043
1707605044 如果只是为了反弹带电粒子,用某种类似电磁屏蔽的手段就可以了,它也能在空间战斗中帮你抵挡一些武器伤害。但是,力场则类似于一种无形的汽车安全气囊,可以阻止各种迎面而来的物质。飞船需要被一些向外扩张的东西包围着,以阻止迎面飞来的物质离船体太近或损伤飞船。
1707605045
1707605046 力场的基本概念和电影里面的介绍不同,需要追溯到科幻小说的鼎盛时期。英国科学家迈克尔·法拉第早在19世纪早期就提出,磁可以被设想为看不见的力场。电线在磁场中移动,电线切割想象出来的磁力线,产生出电流。力场将其他基本力也包括其中,再加上法拉第的想法有了数学依据,使得场成为现代科学的基本概念。
1707605047
1707605048 场是事物——任何在时空中有数值的事物——的抽象图像。(理论上,你可以想象世界上有无数个场,只不过有些场在所有点的值都为0,哲学家闲来无事会以此为乐。)可以用海拔的概念来理解场。在地球上的任何一点,海拔都是一个数值,不同地方的海拔高度是不一样的。你可以想象场就是时空组成的一系列数值,在场中的不同地方,数字也不同。如果你把一个物体放在地球上“海拔场”很强的位置上(我们管它叫“高的地方”),同时这个位置周围都是弱的“海拔场”,那么在场的作用下,物体就会把势能转化为动能。在现实世界中,物体会沿着坡滚下来。场的概念基本上就是这样,我们更多的是利用场的概念进行计算。
1707605049
1707605050 在现代物理中,场的概念在解释自然界四力和基本粒子的本质及相互作用(所谓的“标准模型”)时无处不在。即便是大名鼎鼎的希格斯玻色子,也不过是延展时空中的另一种场——希格斯场——的展现。不经常接触物理学的人可能会认为场不如我们更熟悉的粒子和波更易理解,但这3个概念都可以用来描述所见的东西,它们都是科学家的模型。每种模型都适用于某些情况,在现代物理学所用到的数学工具中,场是一种较为有效的思考方式。
1707605051
1707605052 光可以被视为场概念的应用形式。光不是量子电动力学中描述的真正的粒子,不是我们在学校里学到的波,也不是光场中的一个扰动,尽管科学家现在常这么认为。光就是光,光在我们不能直接观察或描述的量子级别上运行。光打在镜子上,不像网球打在墙上,也不像海水拍打在岩石上。后面两种情况都涉及具象的物体,可以帮助我们描绘到底发生了什么,但这都不是光真正的样子。光也不是由场中的扰动导致,这不过是另一种能够产生可靠结果的数学模型。
1707605053
1707605054 粒子、波和场都是抽象的模型,科学家可以通过它们了解世界。科学家有时候使用波模型,有时候则使用粒子模型。从数学的角度看,场模型更普适,但也更难理解,特别是对那些非专业人士来说。每种方法都有各自的用途,没有一种方法能解释世界的所有问题。
1707605055
1707605056 科学家所说的“力场”和科幻作品中使带电粒子远离飞船的电磁场有相似之处。但是科幻作品中的力场要能阻止一切靠近飞船的东西。理想的概念可能是负引力场,因为引力的产生与粒子带不带电没有关系。但是我们其实不太知道如何操控重力。即便我们能造出一个产生引力的机器,也只能产生吸引力而不是排斥力。
1707605057
1707605058 事实上,我们很难在真实科学中为力场找到依据。但如果是为了防御死光(科幻作品里的典型武器)的攻击,我们也不是无路可走。本书第16章要讲的隐形护盾可以让飞船隐形,也能让飞船远离光学武器的威胁。(科幻作家很少意识到隐形装置也能用作对抗射线武器的护盾。)但是电磁防护只能屏蔽带电粒子的干扰,所以未来世界中真实的宇宙飞船仍要像今天的主力舰一样全副武装才行。
1707605059
1707605060 科幻作品中的另一个惯用伎俩——牵引光束,事实上是与上文相反的力场,即把物体朝宇宙飞船方向吸引过来的场。乍一看,这好像更容易实现。牵引光束在科幻作品中的出现已经有100多年的历史了,也许是从相互吸引的磁铁那里得到的灵感。磁现象从中世纪开始被研究,但是直到19世纪真相才逐渐浮出水面:磁和电一样,都是电磁现象的一部分。
1707605061
1707605062 牵引光束的一个早期例子出现在儒勒·凡尔纳的《流星追逐记》(The Hunt for the Meteor)里,这部书在他去世后于1908年出版。书中的“中性螺旋线”被用来牵引书名中提到的流星,并把流星带回地球。这个中性螺旋线看起来像是由凡尔纳的儿子迈克尔在完成父亲遗作时加上去的。中性螺旋线具备牵引光束的通常特性,这个概念更接近于魔术,而不是科学。除此之外,实在是没有什么好的理由能解释牵引光束具备的强大吸引力了。
1707605063
1707605064 “牵引光束”虽然不像力场那样在科幻领域以外被人熟知,但是这个词从首次出现在雨果·根斯巴克创办的科幻杂志《惊奇故事》(Amazing Stories)中后,便经常出现在科幻作品中。1931年7月,爱德华·埃尔默·史密斯的小说《星际公司的太空猎犬》(Spacehounds of IPC)在《惊奇故事》上刊出,其中反复出现了在太空中操纵大型物体的场景。牵引光束也被称作“牵引杆”和“牵引场”,但后两个称呼不像牵引光束对读者有那么大的吸引力。事实上这并不让人吃惊,就像许多太空歌剧中使用的航海类比一样(想想“企业”号的命名方法),牵引光束更像“泊船用的抓钩”的同类物。
1707605065
1707605066 牵引光束以非实体的场的形式存在,它和抓钩类似的功能也有一个最大的问题,即它根本没有科学依据。我们深谙激光武器的作用原理:激光武器打中物体的时候,从远距离给物体施加了一个推力。但是,拉力和推力完全不一样。拉力需要施力方和目标物体之间有吸引力,比如用磁铁拉动金属物体(虽然把磁力聚合成一个光束不太可能),但用磁铁拉动石头就不可能。
1707605067
1707605068 如果有介质参与,那么形成拉力就简单得多。2014年,澳大利亚国立大学的一个研究小组在水面上实现了“牵引光束”。科研人员发现,当用一种平时看来非常不恰当的方式使用“制波浪机”——一个周期性浸入水中的滚筒时,他们能够在水面上制造出一种拉力。在最简单的慢速情况下,波会远离制波浪机,但当设备的速度加快时,系统内会产生一种振荡模式——小波浪之间相互作用,波会带着水向着制波浪机的方向运动,带动系统内的其他物质也一起运动。这个技术也许会被用来制造以水为介质的牵引光束,从而吸引溢油或者其他杂质向想要的方向运动。但在太空中,牵引光束没有介质,因此必须依赖基本力,比如重力或电磁力。
1707605069
1707605070 重力作为我们日常生活中最常见也最容易被忽略的引力,不能用于产生牵引光束的原因有很多。首先,重力太弱了。我们常会忘记这一点,因为我们在类似太阳和地球的极其庞大的星体上都会感受到重力。但是和电磁力相比,重力微乎其微,电磁力通常相当于重力的1036倍。除非能增加星球的引力,不然我们基本上无法利用重力。其次,重力不能收集,也不能被屏蔽。重力不受承载介质的影响,即便可以产生强有力的重力牵引光束,它也会对所有方向产生作用,不仅拉住你想拉住的宇宙飞船,而且会将飞船周围的一切杂质也一并拉住。
1707605071
1707605072 虽然电磁力比重力强很多,但是电磁力也不适用于产生牵引光束。重力只会吸引,而电磁力既能吸引也能排斥。更糟糕的是,对于绝缘体来说,电磁力完全没有任何作用。从理论上说,宇宙飞船可以受到电磁力的吸引,但是如何汇聚电磁力依然是一个问题,而且电磁引力会随着距离的增大快速地减弱,所以在几英尺[1]以外的地方也许电磁力牵引光束就没有效用了。
1707605073
1707605074 牵引光束有一个实现方法,那就是用特制的激光。光能产生压力,因为光中的光子没有质量,但却有能量,这意味着光子有动量。因此,和光子相撞的物体会受到推力的作用。“光压”是真实存在的,这也是“太阳帆”的工作原理。这些大约有几千米长的非常薄的金属化塑料板,利用光压为空间探测器加速,这也许会是未来空间旅行的加速原理。光压最开始在彗星的尾巴中被发现,彗星的尾巴永远指向远离太阳的方向,这意味着它受到了某种源于太阳的力的影响。
1707605075
1707605076 我们一度以为类似“克鲁克斯辐射计”或“光压风车”的小仪器可以展示光压原理。这些仪器看起来像老式的电灯泡,但其内部并不是钨丝,而是由自由旋转枢轴带动的4个“帆”或“桨”——一侧的两个是黑色的,另一侧的两个是白色的。当这个仪器被放置在强光下时,旋转枢轴将带动桨转动。理论上,这可以用来展示光压原理,因为白色桨会反射光,黑色桨会吸收光。但桨是按照与预期相反的方向转动的。黑色桨吸收光、温度增加,把热传递给周围的空气分子,空气分子加速运动,把动量传递到黑色桨上,于是浆开始转动。
[ 上一页 ]  [ :1.707605027e+09 ]  [ 下一页 ]