1707607497
1707607498
我们有很多理由敬佩托勒密,这其中最重要的一个就是,他利用当时有限的工具进行了非常认真和负责的研究工作。在当时所知的范围内,他的体系充满了奇思妙想,在数学上更是极大超越了其他之前的研究。他竭尽其所能进行了细致入微的观测,其数学计算也极为精准。不仅如此,根据研究需要,托勒密的数学体系一方面相当复杂,一方面又尽可能地简单,为他当时的研究工作提供了利器。所以,托勒密是一位真正的科学家,因为他建立了标准。
1707607499
1707607500
经过了相当漫长的时间和诸多的争论后,天文学中才出现了超越托勒密所贡献的学说,这便是托勒密的一项丰功伟绩。科学研究的脚步无可阻挡,托勒密让这前进的步伐不再与痴心妄想、迷信或凭空想象做伴。在现代天文学的伟大年代中,托勒密的接班人仍然需要遵循他的规则——更为细致入微的观测、精准无误的演算、在复杂与简单中找到平衡点。托勒密向现代人发起了挑战,让他们来超越自己。而如今,后辈也已经做到了。而我们,这些托勒密的后辈,还欠托勒密很多。
1707607501
1707607502
1707607503
1707607504
1707607506
世界因何美妙而优雅地运行 22SIMPLICITY论简单
1707607507
1707607508
弗兰克·维尔切克(Frank Wilczek)
1707607509
1707607510
2004年诺贝尔物理学奖得主,麻省理工学院理论物理学家,著有《存在之轻》(The Lightness of Being)。
1707607511
1707607512
我 们所有人对“简单”的含义都有一种直觉。在科学的世界里,“简单”通常带有褒义。相比繁复冗杂的长篇大论,我们更倾向于简单明了的阐释,因为它更自然、更全面、更可靠。我们都厌烦周转圆(即前文中提及的“本轮”),也憎恶一堆例外和特殊状况。但是我们能否再迈出关键的一步,把关于简单的直觉重新定义为精准的、科学的概念呢?天地间是否存在一个获取“简单”的简单核心呢?“简单”这个概念能否被量化和测量呢?
1707607513
1707607514
每当思考重大的哲学问题时,我都力求达到精益求精,而其中我最心仪的一个技巧,便是力求用计算机可以理解的方式来构建问题。通常这属于一种分解的方式,这样做能够迫使你保持清醒,一旦拨开迷雾,你将发现所谓的重大哲学问题已经随风而逝、不复存在。然而,在获取简单的本质时,这个技巧已被证实为具有创造性了,因为它直接引领我在信息数学理论领域获得了一个简单却又意义深远的理论,对长度进行描述的概念。该理论在科学文献中有若干不同的叫法,包括演算熵(algorithmic entropy)和柯尔莫哥洛夫–斯米尔诺夫–蔡廷复杂度(Kolmogorov-Smirnov-Chaitin)。理所当然地,我本人选择了最为朴素简单的那个叫法。
1707607515
1707607516
尽管对长度进行描述本质上是对复杂度进行的一种测量,但究其目的,亦有其益。因为我们可以定义简单与复杂互为对立,或用数字的表现形式定义简单与复杂互为相反数。如果使用一台计算机来计算某事的复杂度,我们必须将“某事”以一种计算机可处理的形式呈现出来,也就是必须将其转化为一个数位文档,也就是由若干0和1所组成的字符串。这是一个很有用的约束,举个例子,我们都知道电影是以数据文件的方式呈现的,因此我们能够对一部电影里所呈现的任何事物的简单性进行探索。由于我们的电影可能是关于记录科学观测或实验方面的,因而我们能够对一个科学阐释的简单性进行提问。
1707607517
1707607518
当然,充满趣味性的数据文件或许相当庞大,但诚实地讲,庞大的文件并不需要有多复杂。比如,一个包含数万亿个0而无其他数据的文件一点都不复杂。简而言之,描述长度的理论就是指一个文件,一个将复杂信息通过最简单的形式呈现的文件。或者,用计算机术语来解释,一个文件的复杂度,就像它从零开始运行的最短程序那般复杂。综上,“简单”可被定义为具有精准性、广泛适应性和数字可量化性的特征。
1707607519
1707607520
简单具有一条令人印象深刻的优点,即它点亮和启发了若干引人注目、成就功业的认知。譬如在理论物理学中,我们力求用精简却又强大的定律来总结海量的观测和实验成果。换言之,我们一直在不停地编写可以诠释这个世界最简单的程序。准确地说,理论物理学是对简单进行求索的一门学科。
1707607521
1707607522
接下来我们要适时增加“对称”概念,它是物理学定律的一个中心特征,是“简单”的强大助推器。如果我们要研究空间-时间转化下的对称性定律,即这些定律适用于任何时间、任何地点,那么我们就不需要再为遥远宇宙的某处或不同历史时期推演出新定律,就能够让这个世界的程序简短精炼。
1707607523
1707607524
◎ 由简入深:一个简短精炼的程序最终展开为丰富的推算,其必须能够支撑起逻辑和演算的长链条,此为深度的本质。
1707607525
1707607526
◎ 由简达雅:最简短精炼的程序只蕴含真理。每一组比特都发挥着作用,否则我们就删除程序使其更为简短。程序里的每个不同的内容都将在一起顺畅平稳地运行,最终实现由少至多。在我看来,世间最为优雅的过程,便是遵循DNA的程序,把一个受精卵最后培育成一个婴儿。
1707607527
1707607528
◎ 由简至美:正如我们看到的那样,简单造就了对称,这是体现其优雅的一个方面。实际上,对称兼具深邃与优雅。
1707607529
1707607530
正如我们所正确领悟到的那样,简单诠释了深邃、美妙、优雅的科学理论。
1707607531
1707607532
1707607533
1707607534
1707607536
世界因何美妙而优雅地运行 23EINSTEIN’S PHOTONS爱因斯坦的光子学
1707607537
1707607538
安东·蔡林格(Anton Zeilinger)
1707607539
1707607540
维也纳大学物理学家,奥地利科学院量子光学和量子信息研究所主任,著有《光子之舞》(Dance of the Photons)。
1707607541
1707607542
我 所挚爱的深邃、优雅的科学理论是爱因斯坦于1905年提出的观点:光是由能量子组成的。现今我们将能量子称为光子。相当有趣的一点是,即使在物理学界,也鲜有人知道爱因斯坦是如何得出这个结论的。公众通常以为,这个观点是爱因斯坦用来解释光电作用的。爱因斯坦在1905年发表的观点里确实有这部分内容,但仅仅在最后才被提及。事实上,这个观点本身更为深奥、更为优雅,也更为美丽。
1707607543
1707607544
假设一个密闭容器的四壁达到了某种温度,四壁在闪闪发光,它们一边释放辐射,一边也吸收着辐射。一段时间之后,容器内部的辐射分布将会达到平衡。在爱因斯坦之前,这个观点已经广为人知。普朗克引入了量子化的概念,对处于这样一个体积内部的能量辐射分布作出了解释。爱因斯坦则更进一步,他研究了容器内的辐射是如何有序进行分布的。
1707607545
1707607546
对物理学家而言,熵是对混乱程度的一种度量。奥地利物理学家路德维希·玻尔兹曼论证了,一个系统的熵是对该系统状态可能性的一种度量。举个简单的例子,书籍、笔记本、铅笔、相片等物体,相对于这些东西被整整齐齐码放在一起,它们更有可能是四处散落在书桌上。或者我们假设,一个容器内装有100万个原子,相对于所有原子都集中在一个角落里,这100万个原子更有可能均匀地分布在容器内。在以上两种情形下,“均匀分布在容器内”这种状态的有序性会弱一些,并且当一个更大的容器装有这些原子(或物体)的时候,它们会具有更高的熵值。
[
上一页 ]
[ :1.707607497e+09 ]
[
下一页 ]