打字猴:1.700271055e+09
1700271055 五堂极简生物课 [:1700270909]
1700271056 五堂极简生物课 二 基因The Gene
1700271057
1700271058 五堂极简生物课 [:1700270910]
1700271059 时间的考验The Test of Time
1700271060
1700271061
1700271062
1700271063
1700271064 我有两个女儿和四个外孙。他们每个人都是独一无二的。具体来说,我有个女儿叫萨拉,是电视制作人,另一个女儿叫埃米莉,是物理学教授。但她们都有某些共同点,她们和各自的孩子,和我还有我妻子安妮,也有一些共同点。家人间的相似之处可能很明显,也可能微乎其微——身高、眼睛的颜色、嘴角或鼻子的弧度,甚至某些独特的习惯或面部表情。尽管存在各种各样的变化,但不可否认的是:某些特点是世世代代连续传承的。
1700271065
1700271066 父母与其后代有相似性,这是一切生物有机体的决定性特征。亚里士多德和其他古代哲人早就认识到了这一点,但生物遗传的基础究竟是什么,仍是个未解之谜。千百年来,人们给出了各种解释,其中有些在今天听来匪夷所思。比如亚里士多德的猜想:母亲影响了腹中胎儿的发育,就像特定的土壤质量影响了种子生长为植株。另一些人则认为是因为“血液混合”,也就是说,后代继承的是父母双方的特征混合后的平均值。
1700271067
1700271068 基因的发现为我们铺平了道路,让我们得以更现实地理解遗传是如何进行的。基因不仅提供了一种解释,帮助我们理解既有相似性又有独特性的复杂家族遗传方式,也是最关键的信息来源,生命用它来构建、维持和繁殖细胞,乃至最终用细胞组成生物体。
1700271069
1700271070 格雷戈尔·孟德尔(Gregor Mendel)是史上第一个对遗传奥秘有所认知的人,他曾在如今的捷克共和国境内的布尔诺的修道院担任院长。不过,他的这一成就并非因为研究了人类家庭中时常令人费解的遗传模式,而是因为他在用豌豆植株做了无数细致的实验后,孵化出了新的观点,并最终引导我们发现了如今被称作基因的物质。
1700271071
1700271072 孟德尔不是第一个用科学实验提出遗传问题的人,甚至也不是第一个通过植物寻找答案的人。早期的植物育种家已经描述了植物的某些特性是以何等出人意料的方式代代相传的。两种不同的亲本植物杂交后的新一代植株有时看起来就像两种亲本的混合体。比如,一株紫花植物和一株白花植物杂交,可能产生一株粉花植物。但在某一代中,某些特征似乎总是能凌驾于别的特征之上。比如,一株紫花植物和一株白花植物的后代只会开出紫色的花。早期先驱者们收集了很多耐人寻味的线索,但没有一个人能对植物基因的遗传方式做出令人满意的解释,更不用说解释基因在我们人类——毋宁说一切生物中——是如何运作的了。然而,孟德尔对豌豆的研究揭示的恰恰就是这一点。
1700271073
1700271074 1981年,冷战中期,我独自前往布尔诺的奥古斯丁修道院朝圣,想去看看孟德尔工作过的地方。当时,那里还没有像如今这样成为一个旅游景点。花园大得令人咋舌,草木杂乱疯长。我很容易想象出那个场景:孟德尔曾在那儿种过一排又一排的豌豆。他之前曾在维也纳大学攻读自然科学,但没能考取教师资格。然而,物理学习过程中的一些心得让他深受裨益。他清楚地了解到自己需要大量数据:样本越多,就越可能揭示出重要的模式。他的一些实验,样本多达10 000株豌豆。在他之前,没有哪个植物育种家做过要求如此严格、数量如此之多的定量实验。
1700271075
1700271076 为了降低实验的复杂程度,孟德尔把重点放在了那些能呈现出明显差异的生物特征上。他用了好多年,仔细记录他设定的杂交的结果,发现了一些被别人忽略了的规律。最重要的是,他观察到那些豌豆植株表现出的或缺乏的性状——比如特定的花色或种子形状——之间是成特殊的算数比的。孟德尔所做的重要工作之一就是用数学方法来描述这些比例。他由此得出结论:豌豆花蕊里的雄性花粉和雌性胚珠含有他称之为“因子”的东西,这些遗传因子与亲本植物的不同性状有直接关联。不同的因子通过授粉结合后,会影响下一代植株的性状。只不过,孟德尔还不知道这些因子是什么,又是如何发挥作用的。
1700271077
1700271078 无独有偶,差不多就在孟德尔做豌豆实验的同一时期,另一位著名的生物学家查尔斯·达尔文也在研究金鱼草花的杂交实验,这种巧合耐人寻味。达尔文也注意到了类似的比例,但他没有试图去解释其背后的深意。不管怎样,孟德尔的成果几乎被他同时代的人完全忽视了,整整一代人后,人们才认识到他的发现有多么重要。
1700271079
1700271080 1900年前后,有些独立工作的生物学家们重现了孟德尔的实验结果,并对其加以发展,提出有关遗传方式的更明确的预测。孟德尔遗传学说(以这位堪称先驱的修道士的名字命名)由此诞生,遗传学也自此创立,引起了全世界的关注。
1700271081
1700271082 孟德尔遗传学说指出,遗传特征是由实际存在的粒子决定的,这些粒子总是成对存在,也就是孟德尔所说的“因子”,我们现在称之为“基因”。孟德尔遗传学说并未过多言及这些粒子是什么,但它用一种非常明确的方式阐述了这些粒子是如何遗传给下一代的。最重要的是,事态渐渐明朗了:这些结论不仅适用于豌豆,也适用于所有有性繁殖的物种——从酵母到人类,以及介于这两者之间的所有生物。你的每一个基因都是成对存在的,分别遗传自你的亲生父母。在受孕的那一刻,通过精子和卵子融合,基因被传递给了你。
1700271083
1700271084 19世纪的最后30多年里,也就是孟德尔的发现未被世人关注的那段时间里,科学并没有停滞不前。尤其值得一说的是,研究者们终于更为清晰地观测到了处于分裂过程中的细胞。最终,当这些观察结果与孟德尔遗传学说提出的遗传粒子联系在一起时,担当生命主角的基因就成了万众瞩目的焦点。
1700271085
1700271086 早期观测发现的线索之一是细胞内很像细线的微观结构。这种结构在19世纪70年代由德国细胞生物学家瓦尔特·弗莱明(Walther Flemming)首次发现,他曾是一位军医。在当时最先进的显微镜的帮助下,弗莱明描述了这些极其微小的细线是以何等有趣的方式活动的。细胞准备分裂时,弗莱明看到这些细线纵向地分为两半,然后变短变粗。接着,随着整个细胞一分为二,这些细线也分离开,分别包含在新形成的两个子细胞中。
1700271087
1700271088 弗莱明亲眼观测到的——但当时没能完全理解的——就是孟德尔遗传学说提出的遗传粒子,也就是基因的实体表象。弗莱明所说的“细线”就是我们现在说的“染色体”。染色体是所有细胞中包含基因的实体结构。
1700271089
1700271090 大约在同一时期,还出现了一条关于基因和染色体的关键线索,来自令人意想不到的观测对象:寄生蛔虫的受精卵。比利时生物学家爱德华·凡·贝内登(Edouard van Beneden)在仔细观察蛔虫发育的最早期阶段时,通过显微镜看到每个已受精的新胚胎的第一个细胞都含有4条染色体:从卵子和精子中分别得到的两条染色体。
1700271091
1700271092 这完全符合孟德尔遗传学说的预测——两组成对基因,在受精的那一刻融合在一起。凡·贝内登的结果后来得到了多次证实。卵子和精子中各有一半染色体,当两者融合成受精卵时,全部数量的染色体随之汇合。现在我们已经知道,有性繁殖的蛔虫是这样的,包括人类在内的所有真核生物也都是这样的。
1700271093
1700271094 不同生物的染色体数量差异很大:豌豆植株的每个细胞里有14条,我们有46条,而阿特眼灰蝶的细胞里有400多条。凡·贝内登非常走运,因为他观测的蛔虫只有4条染色体。但凡染色体再多几条,他就没那么容易数清楚了。正是通过密切观察蛔虫这种相对简单的对象,凡·贝内登才窥见了一个有关基因遗传的普遍真理。从一个简单的生物系统开始,从一个容易解释清楚的实验开始,我们可以开阔视野,由此提出有关生命运作规律的更具普遍性的见解。正因如此,我才把大部分工作时间都用于研究构造简单、容易研究的酵母细胞,而非更复杂的人类细胞。
1700271095
1700271096 综合弗莱明和凡·贝内登的发现,事情就变得越发清晰起来:染色体既能在细胞分裂时完成基因的代际传递,也能在整个生物体的代际间传递基因。你身体里的每一个细胞都包含你全部基因的副本,除了少数特例——比如红细胞,它们在成熟的过程中会失去整个细胞核,因而失去所有基因。在单个受精卵细胞长成一个完整的有机体的过程里,这些基因起到了重要的指导作用。在每个生命体的整个生命周期中,每个细胞构建和维持自身所需的必要信息都来自基因。每次细胞分裂时,整套基因都必须被完整复制,再均衡地分配给两个新形成的细胞。这意味着:细胞分裂是生物学中繁殖的基本示例。
1700271097
1700271098 生物学家面临的下一轮巨大挑战是了解基因到底是什么,以及它们是如何工作的。1944年,纽约的一小群科学家在微生物学家奥斯瓦尔德·埃弗里(Oswald Avery)[1] 的领导下进行了一项实验,确定了基因的物质成分。当时,埃弗里和他的同事们正在研究引起肺炎的细菌。他们已经知道,如果把这些细菌的无害菌株与其已失去活性的毒株的细胞残余物混合时,它们会转变为危险的毒株。更要命的是,这种变化是会遗传的:只要这些细菌变为毒株,就会把这种特性传递给所有后代。埃弗里由此推断,作为一个化学实体,一个或多个基因被从失去活性的有害细菌中传递到了无害的活细菌中,并且永远改变了后者的性质。他明白了,如果他能发现失去活性的细菌中负责这种基因转变的部分,就能向世界展示基因是由什么物质组成的。
1700271099
1700271100 结果表明,事实上,具有关键性的转化特性的是一种叫作脱氧核糖核酸(deoxyribonucleic acid)的物质——你可能对它的缩写,也就是大名鼎鼎的DNA更为熟悉。细胞内携带基因的染色体含有DNA,这个观点到这个时期已被广泛接受,但大多数生物学家认为,DNA太简单、太枯燥了,这么一个小分子承担不了遗传这样复杂的现象。他们错了。
1700271101
1700271102 你的每条染色体的核心都是一个完整的DNA分子。这些染色体可以非常长,每一条都能包含数百个,甚或数千个基因,一个接一个排列成链状。比如,人类的2号染色体包含一条有1300多个基因的长链,如果你把这一DNA片段拉出来,总长度将达到8厘米。如此算来,总体数量就极其惊人了,你的每个微小细胞里的46条染色体都有总长超过2米的DNA。经过神奇地打包,它们能全部被纳入一个直径不超过千分之几毫米的细胞里。更惊人的是,假如你能把自己体内数万亿个细胞里盘成螺旋状的DNA一一拉开,排成一条细线,其总长度将达到200亿公里。这个距离,足够从地球到太阳往返65次!
1700271103
1700271104 埃弗里是个相当谦虚的人,他没有大张旗鼓地宣传自己的新发现,另一方面,有些生物学家对他的结论持有异议。但他是对的:基因是由DNA构成的。当这个真理最终被世人领悟,就标志着遗传学乃至整个生物学的新纪元的到来。基因终于可以被理解为化学实体:遵守物理和化学定律的稳定的原子集合体。
[ 上一页 ]  [ :1.700271055e+09 ]  [ 下一页 ]