1700431684
3.1 汽车保险业:车载信息服务数据的价值
1700431685
1700431686
车载信息服务在汽车保险行业中的关注度非常高。车载信息服务是通过汽车内置的传感器和黑盒来收集和掌握车辆的相关信息。我们可以配置不同的方案,使用黑盒来监测所有的汽车数据。我们可以监测车速、行驶里程,以及汽车是否安装了紧急制动系统。车载信息服务数据能够帮助保险公司更好地理解客户的风险等级,并设置合理的保险费率。如果彻底地忽略隐私问题,车载信息服务装置可以跟踪到汽车去过的所有地点、何时到达的、以多快的速度、使用了汽车的哪些功能等。
1700431687
1700431688
车载信息服务可以潜在地降低司机的保险费率,并提升保险公司的收益。它是怎样做到在降低费率的同时提升收益呢?答案就在于保险公司要根据风险评估来进行保险定价。传统的风险评估方法使用的是年龄、人口统计特征以及个人意外伤害历史这类数据,它们只能提供高层次的概要信息。对于驾驶记录没有任何问题的车主,传统方法根本没办法把他们和附近的其他人区分开。
1700431689
1700431690
保险公司要未雨绸缪,并做好最坏的打算。它们要弄清楚哪些人放在哪个风险范围上是最安全的,一般情况下,它们会先假定这些人的风险是位于该风险范围较高的一端。汽车保险公司对车主的行为习惯和实际风险了解得越详细,风险范围就会越窄,同时认定范围内出现需要提升费率的最坏情况的可能性就会比较小。这就是为什么可以同时降低保险费率和提升收益的原因。如果保险公司认为投保个体的风险较好,那么保险公司将可以更好地了解每个人的风险状况,预计必须支出的保费就不会发生太大变化。
1700431691
1700431692
全球很多国家的保险公司都在使用车载信息服务,而且数量越来越多。早期项目的注意力放在从汽车上收集最少的信息,例如,它们并不关心汽车去过什么地方。早期项目跟踪的是汽车开了多远、什么时候开的车、是否超速和是否使用了大量的紧急制动。这些信息都是非常基本的信息,不牵涉到个人隐私,是故意设计成这样的。因为避免了收集高度敏感的信息,所以才会被广泛地接受。这个道理也同样适用于商业车队。如果保险公司了解到公司车队更多的用车情况,那么它为公司车队确定保险费率也就更容易。
1700431693
1700431694
车载信息服务数据最初是作为一种工具出现的,它可以帮助车主和公司获得更好的、更有效的车辆保险。再过一段时间,等到许多交通工具都安装了车载信息服务装置后,那时保险业以外的行业也可以使用车载信息服务数据了。现在,公共汽车已经有了车载计算机管理系统,但是车载信息服务设备可以将其提升到一个新的层次。车载信息服务数据还有一些有趣的应用,我们来看一下这些应用。
1700431695
1700431696
使用车载信息服务数据
1700431697
1700431698
如果车载信息服务真的开始大规模应用,一定会出现许多令人兴奋的分析应用。想象一下,以后全国有数以千万计的汽车都安装了车载信息服务装置,那时候第三方研究公司会以匿名的方式为客户收集非常详细的车载通信数据。与为保险收集的有限数据不同,这时数据收集是以分钟或秒为频率,且收集内容包括但不限于速度、位置、方向和其他有用的信息。
1700431699
1700431700
无论交通是否阻塞,无论什么日期,这种数据反馈方式都会提供大量的车载通信信息。研究人员可以知道每辆车在道路上的行驶速度,他们还可以知道车流开始的时间、结束的时间,以及持续的时间。这种真实的交通流信息视图将会多么令人惊讶!试想这会对交通阻塞和道路系统规划的研究产生多么大的影响!
1700431701
1700431702
无心插柳柳成阴
1700431703
1700431704
车载信息服务数据的多种用途只是一个例子,它说明了可以用最初预见不到的方式来使用大数据。对于某种特定的数据源,我们最后发现它最有效的用途可能与其创建之初的用途大相径庭。面对我们碰到的每一类大数据源,我们要开拓思路,多想想常规之外的其他用途。
1700431705
1700431706
如果研究人员能够掌握大量汽车在每一个高峰时段、每一天、每个城市中的动向,他们就能非常清晰地判断出车流产生的前因后果。此外,还能查明下述问题的答案。
1700431707
1700431708
■ 一个在路中央的轮胎会对交通产生什么影响?
1700431709
1700431710
■ 左侧车道堵车会发生什么?
1700431711
1700431712
■ 如果路口的交通灯不同步,会产生何种结果?
1700431713
1700431714
■ 哪些十字路口虽然按照预期设定方式工作,但通行时间的设计仍然不合理?
1700431715
1700431716
■ 如果某条道路堵塞,堵塞会以多快的速度蔓延到其他道路?
1700431717
1700431718
即使我们集中精力投入到昂贵的测试中,现在要想有效地研究诸如此类的问题也几乎是不可能的。除非我们安排人手来实际地监测每一条道路,记录下所有的信息,只有这样我们才能解决交通堵塞的问题。或者,我们可以安装大量的传感器来监测过往的车辆,还可以安装视频摄像头,但这些选择因为成本问题被严重限制了推广。
1700431719
1700431720
交通道路工程师做梦都想得到我们所讲的车载通信信息。如果车载通信装置变得随处可见,那任何交通拥堵的地方都能被发现。城市道路和交通管理系统的革新,以及城市道路建设规划,都将惠及普通大众。车载通信刚开始出现时是为了满足保险定价的需求,但有了它还可以缓解交通压力和驾驶员堵车时焦急等待的心情,它的存在终将使高速公路的管理模式发生革命性的改变。
1700431721
1700431723
3.2 多个行业:文本数据的价值
1700431724
1700431725
文本是最大的也是最常见的大数据源之一。想想我们周围有多少文本信息的存在,电子邮件、短信、微博、社交媒体网站的帖子、即时通信、实时会议以及可以转换成文本的录音信息。文本数据是现在结构化程度最低的,也是最大的大数据源。幸运的是,我们在驾驭文本数据、利用文本数据来更好地做商业决策方面已经做了很多工作。
1700431726
1700431727
文本分析一般会从解析文本开始,然后将各种单词、短语以及包含文本的部分赋予语义。我们可以通过简单的词频统计,或更复杂的操作来进行文本分析。自然语言处理中已经有很多诸如此类的分析了,这里我们就不再赘述。文本挖掘工具是主流分析套件中一个不可或缺的组成部分。此外,我们还能找到许多独立的文本挖掘工具包。其中一些文本分析工具使用基于规则的方法,用户需要调整软件才能找到自己感兴趣的模式。另一些工具则使用机器学习和其他算法自动地发现数据模式。每种方法都各有利弊,其相关论述已经超出了本书的范围。我们关心的是如何使用生成的结果,而不是使用工具产生结果的过程。
1700431728
1700431729
做完文本解析和分类以后,我们就可以分析这些过程所产生的结果了。文本挖掘过程的输出结果通常是其他分析流程的输入。例如,如果能够分析出客户使用电子邮件的情感,就能利用一个变量将客户的情感标记为正面情感或负面情感。这种标记本身是一种结构化的数据,可以作为分析流程的输入。使用非结构化的文本创建结构化的数据,这个过程通常称为信息提取。
1700431730
1700431731
另一个例子是,假定我们能够在客户与公司往来的邮件中识别出他们对公司某些产品的评价,我们就能利用一系列变量来标识客户的产品评价。这些变量本身也是结构化的度量指标,可以用来做分析。上述这些例子解释了如何捕获非结构化数据片段,并从中提取出相关的结构化数据。
1700431732
[
上一页 ]
[ :1.700431683e+09 ]
[
下一页 ]