打字猴:1.700494413e+09
1700494413 算法之美:指导工作与生活的算法 [:1700494106]
1700494414 算法之美:指导工作与生活的算法 掌握候选对象的完整信息
1700494415
1700494416 经典秘书问题的前提条件是,即时表态一定会被接受,而迟滞表态肯定会遭到拒绝,但是我们在前面讨论的第一组变量(拒绝与复活)则颠覆了这个前提。在这种情况下,最有效的应对办法没有任何变化,仍然是:不要急于表态,观察一段时间后及时出手。
1700494417
1700494418 不过,秘书问题的一个更重要的前提,可能会引起我们的异议。在秘书问题中,除了可以相互比较之外,我们对这些申请者一无所知。对于优秀人员应该具有哪些特点,我们无法参考任何客观标准或者已有标准,而且在比较这些申请者时,我们只能知道孰优孰劣,但是无法了解彼此之间的确切差距。正因为如此,“观望”阶段是不可避免的。在前期阶段,我们冒着与优秀人选失之交臂的危险,不断调整我们的期望值与权衡标准。数学家把这种最优停止问题称作“无信息博弈”。
1700494419
1700494420 这种情境可能与大多数寻租公寓、寻觅伴侣和招聘秘书的情况有天壤之别。假设我们可以参考某种客观标准。例如,安排所有秘书参加打字考试,然后像美国高考(SAT)、研究生入学考试(GRE)或者法学院入学考试(LSAT)那样按照百分制统计成绩。也就是说,根据得分,我们可以知道每名申请者的打字水平在所有人选中的位置。如果申请者得了51分,则表示她的打字水平略高于平均水平,如果得了75分,则表示她的水平高于3/4的申请者,以此类推。
1700494421
1700494422 假设所有申请者可以代表全体人口样本,而且所有数据没有受到任何倾向性或者自选择的影响。同时,假设打字速度是我们判断申请者是否合适的唯一条件。此时,情况就完全不同了,因为我们拥有数学家所谓的“全信息”。1966年的那篇秘书问题研讨会论文指出:“不需要根据积累的经验设定判断标准。有时,我们可以立刻做出一个有益的选择。”换言之,即使得95分的申请者第一个接受评判,我们也可以信心满满地立刻与她签约。当然,前提是我们认为所有申请者中没有得96分的。
1700494423
1700494424 问题来了。如果我们的目标是找到最适合这份工作的优秀人选,那么我们仍然需要小心斟酌,因为其余的申请者当中可能还有更加优秀的人选。不过,既然我们掌握了全信息,就可以直接计算这种可能性到底有多大。例如,下一个申请者得到96分或者更高分的可能性一定是1/20。因此,是否立刻停止的决定取决于还剩下多少申请者没有接受面试。全信息的意义在于我们无须观望就可以直接出手。此时,我们可以运用阈值准则,一旦发现某位申请者的分数高于某个值,就立刻接受她,而不需要先考察一批候选人并确定阈值。但是,我们需要密切关注可供选择的人还有多少。
1700494425
1700494426 数学计算表明,如果还有很多人等待面试,那么你就不应该接受当前正在面试的那名申请者,即使她非常优秀,因为你有可能找到一个更优秀的人选。但是,随着可供选择的人数不断减少,你就应该做好准备,随时准备与优于平均水平的申请者确立雇佣关系。有一句我们都比较熟悉(尽管不是那么鼓舞人心)的话说得好:面对花哨的包装,还是降低你的期待吧。我们还可以找到另外一句话,用以说明与之相反的情况:天涯何处无芳草,何必单恋一枝花!重要的是,无论是哪种情况,数学都可以告诉我们临界点到底在哪儿。
1700494427
1700494428 在这种情况下,最简单的方法是从后往前,反过来理解这些数字的含义。如果你一直面试到最后一名申请者,那么你就别无选择,只能接受他。如果你一直在观望,那么在面试倒数第二名申请者时你需要考虑的问题就变成了:他的分数是否高于50呢?如果是,就雇用她;如果不是,那么你可以考虑把宝押在最后一名申请者身上,因为她的分数高于50的可能性是50%。同理,如果倒数第三名申请者的高于69,倒数第四名的分数高于78,以此类推,那么你就应该立刻选择这名申请者。也就是说,剩余的申请者越多,在评判时就应该越挑剔。无论如何,你都不应该选择低于平均水平的申请者,除非你已经别无选择。(此外,既然你一定要在这些申请者当中挑出最优秀的,那么如果某名申请者不是目前为止最优秀的人选,就一定不要雇用他。)
1700494429
1700494430 在这种全信息版本的秘书问题中,选中最优秀申请者的可能性是58%。这个概率远谈不上十拿九稳,但是已经大大优于无信息博弈中根据37%法则得到的37%的成功率。如果你掌握了所有信息,那么即使申请人数非常多,你多半也会取得成功。
1700494431
1700494432
1700494433
1700494434
1700494435 全信息秘书问题中的最优停止阈值
1700494436
1700494437 因此,全信息博弈往往会产生令人意想不到,有时甚至会让人感到奇怪的结果。如果追求的目标是金钱,而不是爱情,则成功的可能性更高。在根据某种客观标准(例如收入排名情况)评判合作伙伴时,可供使用的信息比较多。如果评判标准是模糊不清的情感反应(“爱情”),则可能需要我们根据经验以及比较结果不断做出调整,同时可供使用的信息也相对较少。
1700494438
1700494439 当然,选择对象的“资产净值”与我们权衡的标准不一定一致。任何标准,只要可以全面反映申请者与其他人对比的情况,就会导致我们弃用摸清情况再行动准则,转而采用阈值准则,同时我们成功找出最优秀申请者的可能性也会大大增加。
1700494440
1700494441 此外,人们还经常修改秘书问题的其他前提条件,使之与现实生活中寻觅爱情(或挑选秘书)等难题更为相似,结果形成了更多的秘书问题变种。不过,最优停止问题给我们的启发不仅限于约会与招聘这两个方面。事实上,在租房子、找停车位、见好就收的时机选择等问题中,我们同样需要面对一个又一个的可选方案,做出最有利的选择。从一定程度上说,这些问题已经得到了解决。
1700494442
1700494443
1700494444
1700494445
1700494446 算法之美:指导工作与生活的算法 [:1700494107]
1700494447 算法之美:指导工作与生活的算法 卖房子的时机
1700494448
1700494449 只需修改经典秘书问题的两个特征,就可以从浪漫的爱情跳进不浪漫的房地产领域。在前文中,我们说过租公寓的过程属于最优停止问题,但是真的拥有房产之后,你仍然难免要与最优停止问题打交道。
1700494450
1700494451 假设你想卖房子。在咨询了几个房地产中介之后,你将粉刷一新、带有园林景观的房子推向市场,然后静等有意者上门。每个看房人提出有意购买时,你基本上都要做出决定,要么接受,要么拒绝。但是,拒绝是有代价的,因为在下一个有意购买者上门之前,你需要再支付一周(甚至一个月)的抵押贷款,而且下一个购买者的报价未必更高。
1700494452
1700494453 卖房子与全信息博弈比较相似。我们知道有意者愿意付出的具体金额,不仅可以看出谁报出的价格更高,而且可以看出彼此之间的具体差额。此外,我们还掌握有关房地产市场行情的更多信息,至少可以对预计的报价变化幅度做一个大致的预测。(有了这样的预测,就相当于掌握了上述打字测试中的信息。)两者之间的差别在于目标不同。卖房子时,我们的目标其实不是得到最有利的报价,而是通过整个过程最终获取尽可能多的钱。由于等待是有代价的,是要付出真金白银的,因此当前的有利报价比几个月之后略高一点儿的报价更有吸引力。
1700494454
1700494455 掌握了这些信息之后,我们就可以省略确定阈值所需的观望阶段,直接确定一个阈值。然后,我们可以忽略所有低于这个阈值的报价,直接接受第一个高于阈值的报价。诚然,如果在某个时间之前不把房子出手,我们有限的积蓄就会消耗殆尽,或者我们只想考虑数量有限的几个报价,对随后的报价不感兴趣,那么在快要达到极限时,我们当然应该降低标准。(购房者喜欢找“积极的”卖主,原因就在这里。)但是,如果没有被这两种情况逼到墙角,那么我们就可以通过成本效益分析,确定是否应该继续观望。
1700494456
1700494457 接下来,我们分析一种非常简单的情况:假设我们清楚报价金额的变化幅度,并且在这个变化范围内各种报价出现的可能性是相同的。只要报价不会中断(我们的积蓄也不会花完),我们就可以单纯地考虑我们对收获或损失的期望值,以决定是否继续等待更有利的交易。如果拒绝当前的报价,预计出现更有利报价的可能性是多少?该报价与当前报价之间的差,乘以该报价出现的可能性,乘积是否大于继续等待的成本呢?数学计算的结果清楚地表明,停止价格是等待成本的一个显函数。
1700494458
1700494459 无论你出售的是价值高达数百万美元的豪宅,还是摇摇欲坠的棚屋,对这个数学结果都不会有任何影响。你唯一需要关心的是你可能接收到的最高报价与最低报价之间的差值。输入几个具体数字,就可以看出这个算法可以提供给我们大量清楚明了的指导意见。例如,假设我们预计报价金额在400000~500000美元之间。首先,如果等待成本非常低,那么在挑选买主时我们几乎无须有任何顾忌。如果等待下一个报价的成本仅为1美元,那么为了赚取尽可能多的钱,我们可以一直等到有人愿意支付499552.79美元时才出手。少一分钱,我们都不会卖给他。如果每次等待需要付出2000美元的代价,那我们就应该等待480000美元这个报价。如果面对的是一个不景气的市场,每次等待需要耗费10000美元时,那么只要报价高于455279美元,我们就应该立刻出手。最后,假设等待成本为预计报价范围的一半(在本例中,报价变化幅度的一半就是50000美元)或更高时,那么观望对我们来说不会有任何好处,最有利的做法是直接接受第一个报价,然后立刻成交。人在屋檐下,不得不低头。
1700494460
1700494461 在这个问题中,阈值完全取决于搜寻成本,这也是这类问题需要注意的关键要点。下一个报价令人心动的可能性(以及搜寻成本)都不会发生任何变化,因此,无论运气如何,我们在搜寻过程中都无须降低最优停止价格。一旦确定最优停止价格之后(即使这是我们在将房子推向市场之前做出的决定),我们就再也不要有任何动摇。
1700494462
[ 上一页 ]  [ :1.700494413e+09 ]  [ 下一页 ]