1700498003
数据挖掘与数据化运营实战:思路、方法、技巧与应用 1.1.2 从4C到3P3C
1700498004
1700498005
4C理论虽然成功找到了从“以产品为中心”转化为“以消费者为中心”的思路和要素,但是随着社会的进步,科技的发展,大数据时代的来临,4C理论再次落后于时代发展的需要。大数据时代,日益白热化的市场竞争、越来越严苛的营销预算、海量的数据堆积和存储等,迫使现代企业不得不寻找更合适、更可控、更可量化、更可预测的营销思路和方法论。于是在基本思路上融合了4P理论和4C理论的nPnC形式的理论出现了。
1700498006
1700498007
具体到典型的互联网行业,虽然学术界对于到底是几个P和几个C仍存在着争议,没有定论,但是这并不妨碍企业积极探索并付诸实践应用,本书姑且以3P3C为例,如图1-3所示,概述互联网行业运营的典型理论探索。
1700498008
1700498009
1700498010
1700498011
1700498012
图1-3 3P3C理论结构图
1700498013
1700498014
在3P3C理论中,数据化运营6要素的内容如下。
1700498015
1700498016
❑Probability(概率):营销、运营活动以概率为核心,追求精细化和精准率。
1700498017
1700498018
❑Product(产品):注重产品功能,强调产品卖点。
1700498019
1700498020
❑Prospects(消费者,目标用户)。
1700498021
1700498022
❑Creative(创意,包括文案、活动等)。
1700498023
1700498024
❑Channel(渠道)。
1700498025
1700498026
❑Cost/Price(成本/价格)。
1700498027
1700498028
而在这其中,以数据分析挖掘所支撑的目标响应概率(Probability)是核心,在此基础上将会围绕产品功能优化、目标用户细分、活动(文案)创意、渠道优化、成本的调整等重要环节和要素,共同促使数据化运营持续完善,直至成功。
1700498029
1700498030
需要指出的是,这里的目标响应概率(Probability)不应狭义理解为仅仅是预测响应模型之类的响应概率,它有更宽泛的含义,既可以从宏观上来理解,又可以从微观上来诠释。从宏观上来理解,概率可以是特定消费群体整体上的概率或可能性。比如,我们常见的通过卡方检验发现某个特定类别群体在某个消费行为指标上具有的显著性特征,这种显著性特征可以帮助我们进行目标市场的选择、寻找具有相似特征的潜在目标用户,制定相应的细分营销措施和运营方案等,这种方法可以有效提升运营的效率和效果;从微观上来理解,概率可以是具体到某个特定消费者的“预期响应概率”,比如我们常见的通过逻辑回归算法搭建一个预测响应模型,得到每个用户的预计响应概率,然后,根据运营计划和预算,抽取响应概率分数的消费者,进行有针对性的运营活动等,这种方法也可以有效提升运营的效率和效果。
1700498031
1700498032
宏观的概率更加有效,还是微观的概率更加有效,这需要结合项目的资源计划、业务背景、项目目的等多种因素来权衡,不可一概而论。虽然微观的概率常常更为精细、更加准确,但是在实践应用中,宏观的群体性概率也可以有效提升运营效果,也是属于数据化运营的思路。所以在实践过程中如何选择,要根据具体的业务场景和具体的数据分析解决方案来决定。更多延伸性的分析探讨,将在后面章节的具体项目类型分析、技术分享中详细介绍。
1700498033
1700498034
上述3P3C理论有效锁定了影响运营效果的主要因素、来源,可以帮助运营人员、管理人员、数据分析人员快速区分实践中的思考维度和着力点,提高思考效率和分析效率。
1700498035
1700498036
1700498037
1700498038
1700498040
数据挖掘与数据化运营实战:思路、方法、技巧与应用 1.2 数据化运营的主要内容
1700498041
1700498042
虽然目前企业界和学术界对于“数据化运营”的定义没有达成共识,但这并不妨碍“数据化运营”思想和实践在当今企业界尤其是互联网行业如火如荼地展开。阿里巴巴集团早在2010年就已经在全集团范围内正式提出了“数据化运营”的战略方针并逐步实施数据化运营,腾讯公司也在“2012年腾讯智慧上海主题日”高调宣布“大数据化运营的黄金时期已经到来,如何整合这些数据成为未来的关键任务”。
1700498043
1700498044
综合业界尤其是互联网行业的数据化运营实践来看,尽管各行业对“数据化运营”的定义有所区别,但其基本要素和核心是一致的,那就是“以企业级海量数据的存储和分析挖掘应用为核心支持的,企业全员参与的,以精准、细分和精细化为特点的企业运营制度和战略”。换种思路,可以将其浅层次地理解为,在企业常规运营的基础上革命性地增添数据分析和数据挖掘的精准支持。这是从宏观意义上对数据化运营的理解,其中会涉及企业各部门,以及数据在企业中所有部门的应用。但是必须指出,本书所要分享的实战项目涉及的数据化运营,主要落实在微观意义的数据化运营上,即主要针对运营、销售、客服等部门的互联网运营的数据分析、挖掘和支持上。
1700498045
1700498046
注意:这种宏观和微观上的区别在本质上对于数据化运营的核心没有影响,只是在本书的技术和案例分享中更多聚焦于运营部门、销售部门、客服部门而已,特此说明。
1700498047
1700498048
针对互联网运营部门的数据化运营,具体包括“网站流量监控分析、目标用户行为研究、网站日常更新内容编辑、网络营销策划推广”等,并且,这些内容是在以企业级海量数据的存储、分析、挖掘和应用为核心技术支持的基础上,通过可量化、可细分、可预测等一系列精细化的方式来进行的。
1700498049
1700498050
数据化运营,首先是要有企业全员参与意识,要达成这种全员的数据参与意识比单纯地执行数据挖掘技术显然是要困难得多,也重要得多的。只有在达成企业全员的自觉参与意识后,才可能将其转化为企业全体员工的自觉行动,才可能真正落实到运营的具体工作中。举例来说,阿里巴巴集团正在实施的数据化运营,就要求所有部门所有岗位的员工都要贯彻此战略:从产品开发人员到用户体验部门,到产品运营团队,到客户服务部门,到销售团队和支持团队,每个人每个岗位都能真正从数据应用、数据管理和数据发现的高度经营各自的本职工作,也就类似于各个岗位的员工,都在各自的工作中自觉利用或简单或复杂的数据分析工具,进行大大小小的数据分析挖掘,这才是真正的数据化运营的场面,才是真正的从数据中发现信息财富并直接助力于企业的全方位提升。也只有这样,产品开发人员所提出的新概念才不是拍脑袋拍出来的,而是来自于用户反馈数据的提炼;产品运营人员也不再仅仅是每天被动地抄报运营的KPI指标,通过数据意识的培养,他们将在运营前的准备,运营中的把握,运营后的反馈、修正、提升上有充分的预见性和掌控力;客户服务部门不仅仅满足于为客户提供满意的服务,他们学会了从服务中有意识地发现有代表性的、有新概念价值的客户新需求;销售部门则不再只是具有吃苦耐劳的精神,他们可通过数据分析挖掘模型的实施来实现有的放矢、精准营销的销售效益最大化。而企业的数据挖掘团队也不再仅仅局限于单纯的数据挖掘技术工作及项目工作,而是肩负在企业全员中推广普及数据意识、数据运用技巧的责任,这种责任对于企业而言比单纯的一两个数据挖掘项目更有价值,更能体现一个数据挖掘团队或者一个数据挖掘职业人的水准、眼界以及胸怀,俗话说“只有能发动人民战争,才是真正的英雄”,所以只有让企业全员都参与并支持你的数据挖掘分析工作,才能够真正有效地挖掘企业的数据资源。现代企业的领导者,应该有这种远见和智慧,明白全员的数据挖掘才是企业最有价值的数据挖掘,全员的数据化运营才是现代企业的竞争新核心。
1700498051
[
上一页 ]
[ :1.700498002e+09 ]
[
下一页 ]