1700498147
数据挖掘与数据化运营实战:思路、方法、技巧与应用 1.4.3 数据分析和数据挖掘技术的有效应用
1700498148
1700498149
数据分析和数据挖掘技术的有效应用是数据化运营的基础和技术保障,没有这个基础保障,数据化运营就是空话,就是无本之水,无缘之木。
1700498150
1700498151
这里的有效应用包括以下两层含义。
1700498152
1700498153
一是企业必须拥有一支能够胜任数据分析和数据挖掘工作的团队和一群出色的数据分析师。一名出色的数据分析师必须是多面手,他不仅要具备统计技能(能熟练使用统计技术和统计工具进行分析挖掘)、数据仓库知识(比如熟悉主流数据库基本技术,可以自助取数,可以有效与数据仓库团队沟通)、数据挖掘技能(熟练掌握主流数据挖掘技术和工具),更重要的是他还要具有针对具体业务的理解能力和快速学习能力,并且要善于与业务方沟通、交流。数据分析挖掘绝不是数据分析师或团队的闭门造车,要想让项目成功应用,必须要自始至终与业务团队并肩作战,从这点来看,业务理解力和沟通交流能力的重要性甚至要远远超过技术层面的能力(诸如统计技能、挖掘技能、数据仓库的技能)。从之前的分析可以看出,一名出色的数据分析师是需要时间、项目经验去磨砺去锻炼成长的,而作为企业来说,如何选择、培养、配备这样一支合格的分析师队伍,才是数据化运营的基础保障。
1700498154
1700498155
二是企业的数据化运营只有在分析团队与业务团队协同配合下才可能做出成绩,取得效果。分析团队做出的分析方案、数据模型,必须要在业务应用中得到检验,这不仅要求业务方主观的参与和支持,也要求业务方的团队和员工同样要具有相应的数据化运营能力和水平,运营团队的人员需要具备哪些与数据化运营相关的技能呢?这个问题我们将在第4章阐述。
1700498156
1700498157
无论是数据分析团队的专业能力,运营团队的专业能力,还是其他业务团队的专业能力,所体现的都是互联网企业的人才价值,这个人才价值与数据的价值一样,都是属于互联网行业的核心竞争力,正如阿里巴巴集团董事会主席兼CEO马云在多个场合强调的那样,“人才和数据是阿里巴巴集团最大的财富和最强大的核心竞争力”。
1700498158
1700498159
1700498160
1700498161
1700498163
数据挖掘与数据化运营实战:思路、方法、技巧与应用 1.4.4 企业决策层的倡导与持续支持
1700498164
1700498165
在关乎企业数据化运营的诸多必要条件里,最核心且最具决定性的条件就是来自企业决策层的倡导和持续支持。
1700498166
1700498167
在传统行业的现代企业里,也有很多采用了先进的数据分析技术来支持企业运营的,支持企业的营销、客服、产品开发等工作。但是总的来说,这些数据挖掘应用效果参差不齐,或者说应该体现的业务贡献价值在很多情况下并没有真正体现出来,总体的应用还是停留在项目管理的层面,缺乏全员的参与与真正跨部门的战略协调配合。这种项目层面的管理,存在的不足如下:
1700498168
1700498169
首先,由于参与分析挖掘的团队与提出分析需求的业务团队分属不同的职能部门,缺乏高层实质性的协调与管理,常会出现分析建模工作与真正的业务需求配合不紧密,各打各的锣,各唱各的歌。由于各部门和员工KPI考核的内容不同,数据分析团队完成的分析方案、模型、建议、报告很多时候只是纸上谈兵,无法转化成业务应用的实际操作。举个简单的例子,销售部门的年度KPI考核是销售额和付费人数,那么为了这个年度KPI考核,销售部门必然把工作的重心放在扩大销售额,扩大付费人数,维护续费人数,降低流失率等关键指标上,他们自然希望数据分析部门围绕年度(短期的)KPI目标提供分析和模型支持,提高销售部门的业绩和效率。但是数据分析部门的年度KPI考核可能跟年度销售额和付费人数没有关系,而跟通过数据分析、建模,完善产品开发与优化,完善销售部门的业务流程与资源配置等相关。很显然,这里数据分析团队的KPI考核是着眼于企业长期发展的,这跟销售部门短期的以销售额为重点的考核在很大程度上是有冲突的。在这种情况下,怎么指望两者的数据化运营能落地开花呢?
1700498170
1700498171
其次,因为处于项目层面的管理,所以数据分析挖掘的规划也就只能局限在特定业务部门的范围内,缺乏真正符合企业发展方向的数据分析挖掘规划。俗话说得好站得高,方能看得远,起点低,视野浅,自然约束了数据分析的有效发挥。
1700498172
1700498173
无论是组织架构的缺陷,还是战略规划的缺失,其本质都能表现出缺乏来自企业决策层的倡导和持续支持。只有得到企业决策层的倡导和支持,上述组织管理方面的缺陷和战略规划的缺失才可以有效避免。如前所述,2012年7月10日阿里巴巴集团宣布设置首席数据官的岗位,并将其作为企业的核心管理岗位之一,其目的就是进一步夯实企业的数据战略,规划和实施企业整体的数据化运营能力和水平,使之真正成为阿里巴巴集团未来的核心竞争力。
1700498174
1700498175
1700498176
1700498177
1700498179
数据挖掘与数据化运营实战:思路、方法、技巧与应用 1.5 数据化运营的新现象与新发展
1700498180
1700498181
时代在发展,技术在进步,企业的数据化运营也在不断增添新的内容、不断响应新的需求。目前,从世界范围来看,数据化运营至少在下列几个方面已经出现了实质性的新发展,这些新发展扩大了数据化运营的应用场景、扩充了数据化运营的发展思路、也给当前(以及未来)数据化运营的参与者提供了更多的发展方向的选择。这些新发展包括的内容如下:
1700498182
1700498183
❑数据产品作为商业智能的一个单独的发展方向和专业领域,在国内外的商业智能和数据分析行业里已经成为共识,并且正在企业的数据化运营实践中发挥着越来越大的作用。数据产品是指通过数据分析和数据模型的应用而开发出来的,提供给用户使用的一系列的帮助用户更好理解和使用数据的工具产品,这些工具产品的使用让用户在某些特定场景或面对某些特定的数据时,可以独立进行分析和展示结果,而不需要依赖数据分析师的帮助。虽然在多年以前,类似的数据产品已被开发并投入了应用,但是在数据分析行业世界范围内达成共识,并作为商业智能的一个独立发展方向和专业领域,还只是近一两年的事情。淘宝网上的卖家所使用的“量子恒道”就是一个非常不错的数据产品,通过使用量子恒道,淘宝卖家可以自己随时监控店铺的流量来源、买家逗留的时间、买家区域、浏览时间、各页面的流量大小、各产品的成交转化率等一系列跟店铺的实时基础数据相关的数据分析和报告,从而有效帮助卖家制定和完善相应的经营方向和经验策略。数据产品作为数据分析和商业智能里一个专门的领域得以确立和发展,其实是跟数据化运营的全民参与的特征相辅相成的。数据产品帮助企业全员更好、更有效地利用数据,而数据化运营的全民参与也呼唤更多更好的数据产品,企业成功的数据化运营建设一定会同时产生一大批深受用户欢迎和信赖的数据产品。
1700498184
1700498185
❑数据PD作为数据分析和商业智能的一个细分的职业岗位,已经在越来越多的大规模数据化运营的企业得以专门设立并日益强化。与上述的数据产品相配套的,就是数据PD作为一个专门的细分的职业岗位和专业方向,正逐渐为广大的数据化运营的企业所熟悉并采用。PD(Product Designer)是产品设计师的英文缩写,而数据PD,顾名思义就是数据产品的产品设计师。数据PD作为数据分析和商业智能中一个新的职业方向和职业岗位,需要从业者兼具数据分析师和产品设计师双重的专业知识、专业背景、技能和素质,有志从事数据PD工作的新人,可以抓住这个崭新的职业,几乎还是一张白纸的无限空间,快速成长,迅速成才。
1700498186
1700498187
❑泛BI的概念在大规模数据化运营的企业里正在越来越深入人心。泛BI其实就是逐渐淡化数据分析师团队作为企业数据分析应用的唯一专业队伍的印象,让更多的业务部门也逐渐参与数据分析和数据探索,让更多业务部门的员工也逐渐掌握数据分析的技能和意识。泛BI其实也是数据化运营的全民参与的特征所要求的,是更高一级的数据化运营的全民参与。在这个阶段,业务部门的员工不仅要积极参与数据分析和模型的具体应用实践,更要求他们能自主自发地进行一些力所能及的数据分析和数据探索。泛BI概念的逐渐深入普及,向数据分析师和数据分析团队提出了新的要求,数据分析师和数据分析团队承担了向业务部门及其员工指导、传授有关数据分析和数据探索的能力培养的工作,这是一种授人以渔的崇高行为,值得数据分析师为之奉献。
1700498188
1700498189
1700498190
1700498191
1700498193
数据挖掘与数据化运营实战:思路、方法、技巧与应用 1.6 关于互联网和电子商务的最新数据
1700498194
[
上一页 ]
[ :1.700498146e+09 ]
[
下一页 ]