1700498671
数据挖掘与数据化运营实战:思路、方法、技巧与应用 3.5 交叉销售模型
1700498672
1700498673
交叉销售这个概念在传统行业里其实已经非常成熟了,也已被普遍应用,其背后的理论依据是一旦客户购买了商品(或者成为付费用户),企业就会想方设法保留和延长这些客户在企业的生命周期和客户的利润贡献,一般会有两个运营选择方向,一是延缓客户流失,让客户尽可能长久地留存,在该场景下,通常就是客户流失预警模型发挥作用,利用流失预警模型,提前锁定最可能流失的有价值的用户,然后客户服务团队采用各种客户关怀措施,尽量挽留客户,从而最终降低客户流失率;二是让客户消费更多的商品和服务,从而更大地提升客户的商业价值,挖掘客户利润,这种尽量挖掘客户利润的说法在以客户为中心的激烈竞争的2.0时代显得有些赤裸裸,所以,更加温和的说法就是通过数据分析挖掘,找出客户进一步的消费需求(潜在需求),从而更好及更主动地引导、满足、迎合客户需求,创造企业和客户的双赢。在这第二类场景中,涉及的主要应用模型就是交叉销售模型。
1700498674
1700498675
交叉销售模型通过对用户历史消费数据的分析挖掘,找出有明显关联性质的商品组合,然后用不同的建模方法,去构建消费者购买这些关联商品组合的可能性模型,再用其中优秀的模型去预测新客户中购买特定商品组合的可能性。这里的商品组合可以是同时购买,也可以有先后顺序,不可一概而论,关键要看具体的业务场景和业务背景。
1700498676
1700498677
不同的交叉销售模型有不同的思路和不同的建模技术,但是前提一般都是通过数据分析找出有明显意义和商业价值的商品组合,可以同时购买,也可以有先后顺序,然后根据找出的这些特性去建模。
1700498678
1700498679
综合数据挖掘的中外企业实践来看,最少有4种完全不同的思路,可以分别在不同的项目背景中圆满完成建立交叉销售模型的这个任务。一是按照关联技术(Association Analysis),也即通常所说的购物篮分析,发现那些有较大可能被一起采购的商品,将它们进行有针对性的促销和捆绑,这就是交叉销售;二是借鉴响应模型的思路,为某几种重要商品分别建立预测模型,对潜在消费者通过这些特定预测模型进行过滤,然后针对最有可能的前5%的消费者进行精确的营销推广;三是仍然借鉴预测响应模型的思路,让重要商品两两组合,找出那些最有可能消费的潜在客户;四是通过决策树清晰的树状规则,发现基于具体数据资源的具体规则(有的多,有的少),国外很多营销方案的制订和执行实际上都是通过这种方式找到灵感和思路的。
1700498680
1700498681
相应的建模技术主要包括关联分析(Association Analysis)、序列分析(Sequence Analysis),即在关联分析的基础上,增加了先后顺序的考虑,以及预测(响应、分类)模型技术,诸如逻辑回归、决策树等。
1700498682
1700498683
上面总结的是基于传统行业的实践,这些经验事实上也成功地应用到了互联网行业的数据化运营中。无论是多种在线产品的交叉销售,还是电子商务中的交叉销售,抑或各种服务的推广、运营中的商品捆绑策略,都可以从中看到交叉销售的影子,这种理念正在深入地影响着数据化运营的效果和进程。
1700498684
1700498685
下面针对典型的交叉销售模型的应用场景来举个例子:A产品与B产品都是公司SAAS系列产品线上的重点产品,经过分析发现两者付费用户的重合度高达40%,现在运营方需要一个数据分析解决方案,可以有效识别出最可能在消费A产品的基础上也消费B产品的潜在优质用户。本案例的分析需求,实际上就是一个典型的交叉销售模型的搭建需求,数据分析师在与业务团队充分沟通后,通过现有数据进行分析,找出了同时消费A产品和B产品(注意,是同时消费,还是有先后次序,这个具体的定义取决于业务需求的判断,两者取数逻辑不同,应用场景也不同,不过分析建模技术还是可以相同的)用户的相关的网站行为、商业行为、客户属性等,之后再进行数据分析和挖掘建模,最后得到了一个有效的预测模型,通过该模型可以对新的用户数据进行预测,找出最可能消费A产品同时也消费B产品的潜在付费用户人群(或名单)。这样,运营方就可以进行精准的目标运营,从而有效提升运营效果,有效提升付费用户数量和付费转化率了。
1700498686
1700498687
1700498688
1700498689
1700498691
数据挖掘与数据化运营实战:思路、方法、技巧与应用 3.6 信息质量模型
1700498692
1700498693
信息质量模型在互联网行业和互联网数据化运营中也是有着广泛基础性应用的。具体来说,电商行业和电商平台连接买卖双方最直接、最关键的纽带就是海量的商品目录、商品Offer、商品展示等,无论是B2C(如当当网、凡客网),还是C2C(如淘宝网),或者是B2B(如阿里巴巴),只要是以商业为目的,以交易为目的的,都需要采用有效手段去提升海量商业信息(商品目录、商品Offer、商品展示等)的质量和结构,从而促进交易。在同等条件下,一个要素齐备、布局合理、界面友好的网上店铺或商品展示一定比不具备核心要素、布局不合理、界面不友好的更加容易达成交易,更加容易获得买家的好感,这里揭示的其实就是信息质量的重要价值。
1700498694
1700498695
为让读者更加直观了解信息质量的含义,下面通过某网站的截图来举例说明什么是信息质量好的Offer效果,如图3-1和图3-2所示。
1700498696
1700498697
1700498698
1700498699
1700498700
图3-1 信息质量较好的Offer界面图
1700498701
1700498702
1700498703
1700498704
1700498705
图3-2 信息质量较差的Offer界面图
1700498706
1700498707
不难发现,相对于图3-2来说,图3-1中有更多的商品要素展示,包括付款方式、产品品牌、产品型号等,另外在详细信息栏目里,所包含的信息也更多更全。也就是说,图3-1中商品Offer的信息质量要明显好于图3-2。
1700498708
1700498709
互联网行业的信息质量模型所应用的场合主要包括商品Offer质量优化、网上店铺质量优化、网上论坛的发帖质量优化、违禁信息的过滤优化等,凡是涉及信息质量监控和优化的场景都是适用(或借鉴)信息质量模型的解决方案的。
1700498710
1700498711
构建信息质量模型所涉及的主要还是常规的数据挖掘技术,比如回归算法、决策树等。但是对于信息质量模型的需求,由于其目标变量具有一定的特殊性,因此它与目标客户预测(响应)模型在思路和方法上会有一些不同之处,具体内容如下。
1700498712
1700498713
任何模型的搭建都是用于响应特定的业务场景和业务需求的,有时候搭建信息质量模型的目标变量是该信息(如商品Offer)是否在特定的时间段产生了交易,此时,目标变量就是二元的,即是与否;更多的时候,信息质量模型的目标变量与是否交易没有直接关系(这其实很容易理解,因为影响成交的因素太多),甚至有些时候信息质量本身是主观的判断,在这种情况下,没有明确的来自实际数据的目标变量。那如何定义目标变量呢?专家打分,模型拟合是一个比较合适的变通策略。
1700498714
1700498715
对于专家打分,模型拟合的具体操作,下面以“商品Offer的星级划分”项目为例来进行具体的解释和示范。商品Offer其实就是网上交易中,卖家针对每种出售的商品展示具体的商品细节、交易条款、图片细节等,使其构成的一个完整的页面,一般来说买家浏览了某种具体的商品Offer以后,只要点击“加入购物车”就可以进行后续的购买付费流程了。在某次“商品Offer的星级划分”项目中,目标变量就是专家打分,由业务专家、行业专家基于行业的专业背景知识,针对商品Offer构成要素的权重进行人为打分,这些构成要素包括标题长度、图片数量、属性选填的比例、是否有分层价格区间、是否填写供货总量信息、是否有混批说明、是否有运营说明、是否支持在线第三方支付等。首先抽取一定数量的样本,请行业专家对这些样本逐个打分赋值,在取得每种商品Offer的具体分数后,把这些分数作为目标变量,利用数据挖掘的各种模型去拟合这些要素与总分数的关系,最终形成一个合适的模型,该模型比较有效地综合了专家打分的意见并且有效拟合Offer构成要素与总分数的关系。为了更加准确,在专家打分的基础上,还可以辅之以客户调研,从而对专家的打分和各要素的权重进行修正,最后在修正的基础上进行模型的搭建和拟合,这属于项目的技术细节,不是项目核心,故不做深入的讲解。
1700498716
1700498717
信息质量模型是电子商务和网上交易的基本保障,其主要目的是确保商品基本信息的优质和高效,让买家更容易全面、清楚、高效地了解商品的主要细节,让卖家更容易、更高效地展示自己的商品。无论是C2C(如淘宝),还是B2B(如阿里巴巴),抑或是B2C(如当当网、凡客网),都可以用类似的方法去优化、提升自己的商品展示质量和效果,有效提升和保障交易的转化率。
1700498718
1700498719
[
上一页 ]
[ :1.70049867e+09 ]
[
下一页 ]