打字猴:1.700541784e+09
1700541784 百面机器学习:算法工程师带你去面试 [:1700532260]
1700541785 百面机器学习:算法工程师带你去面试 参考文献
1700541786
1700541787 [1] He X, Pan J, Jin O, et al. Practical lessons from predicting clicks on ads at facebook[J]. 2014(12): 1-9.
1700541788
1700541789 [2] Friedman J H. Greedy function approximation: a gradient boosting machine[J]. Annals of Statistics, 2001, 29(5): 1189-1232.
1700541790
1700541791 [3] Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space[J]. Computer Science, 2013.
1700541792
1700541793 [4] Turk M, Pentland A. Eigenfaces for recognition.[J]. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86.
1700541794
1700541795 [5] Tibshirani R, Walther G, Hastie T. Estimating the number of clusters in a data set via the gap statistic[J]. Journal of the Royal Statistical Society, 2001, 63(2): 411-423.
1700541796
1700541797 [6] Dhillon I S, Guan Y, Kulis B. Kernel k-means: spectral clustering and normalized cuts[C]//Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2004: 551-556.
1700541798
1700541799 [7] Banerjee A, Dave R N. Validating clusters using the Hopkins statistic[C]// IEEE International Conference on Fuzzy Systems, 2004. Proceedings. IEEE, 2004: 149-153 vol.1.
1700541800
1700541801 [8] Liu Y, Li Z, Xiong H, et al. Understanding of internal clustering validation measures[C]//IEEE, International Conference on Data Mining. IEEE, 2011: 911-916.
1700541802
1700541803 [9] Boyd S, Vandenberghe L. Convex optimization[M]. Cambridge University Press, 2004.
1700541804
1700541805 [10] Nesterov Y. A method of solving a convex programming problem with convergence rate $O(1/k^2)$[C]// Soviet Mathematics Doklady. 1983: 372-376.
1700541806
1700541807 [11] Broyden C G. The convergence of a class of double rank minimization algorithms II. The new algorithm[C]// 1970: 222-231.
1700541808
1700541809 [12] Fletcher R. A new approach to variable metric algorithms[J]. Computer Journal,1970, 13(3): 317-322.
1700541810
1700541811 [13] Goldfarb D. A family of variable-metric methods derived by variational means[J]. Mathematics of Computing, 1970, 24(109): 23-26.
1700541812
1700541813 [14] Shanno D F. Conditioning of quasi-Newton methods for function minimization[J]. Mathematics of Computation, 1970, 24(111): 647-656.
1700541814
1700541815 [15] Liu D C, Nocedal J. On the limited memory BFGS method for large scale optimization[J]. Mathematical Programming, 1989, 45(1-3): 503-528.
1700541816
1700541817 [16] Abramson N, Braverman D, Sebestyen G. Pattern recognition and machine learning[M]. Academic Press, 1963.
1700541818
1700541819 [17] He H, Garcia E A. Learning from imbalanced data[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9): 1263-1284.
1700541820
1700541821 [18] Xu B, Wang N, Chen T, et al. Empirical evaluation of rectified activations in convolutional network[J]. Computer Science, 2015.
1700541822
1700541823 [19] Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
1700541824
1700541825 [20] Kim Y. Convolutional neural networks for sentence classification[J]. Eprint Arxiv, 2014.
1700541826
1700541827 [21] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]// Computer Vision and Pattern Recognition. IEEE, 2016: 770-778.
1700541828
1700541829 [22] Liu P, Qiu X, Huang X. Recurrent neural network for text classification with multi-task learning[J]. 2016: 2873-2879.
1700541830
1700541831 [23] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
1700541832
1700541833 [24] Chung J, Gulcehre C, Cho K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. Eprint Arxiv, 2014.
[ 上一页 ]  [ :1.700541784e+09 ]  [ 下一页 ]