打字猴:1.700678244e+09
1700678244 大脑传 [:1700672997]
1700678245 大脑传 第三部分 未来
1700678246
1700678247 我们最终将如何理解脑,以及这种理解将包括哪些内容,对此做出预测并不容易。这么做也很鲁莽,许多读者(尤其是各位当中的神经科学家们)无疑会不同意下文中的一部分内容,而且预测往往是白费工夫,尤其是事关未来的时候。然而,我还是要写出来。
1700678248
1700678249 如今,令人惊奇的新技术为脑实验提供了一定程度的操控能力,而就在几年前,这种操控能力还会被视作只可能出现在科幻小说里。与此同时,我们将各种发生在脑中的事情成像的能力也变得越来越精确。然而,科学家们一再指出,不仅所有这些数据没有让我们能够理解脑,而且我们甚至还没有踏上实现这一目标的道路。[1] 正如神经科学家奥拉夫·斯波恩斯(Olaf Sporns)所说的那样,“神经科学在很大程度上仍然缺乏组织原理或者理论框架,因此无法将脑研究数据转化为基本知识和认识”。[2] 我们对脑的理解似乎陷入了僵局。
1700678250
1700678251 2017年,《科学》杂志在题为《神经科学:寻找新概念》(Neuroscience: In Search of New Concepts)的系列文章中探讨了这个问题。[3] 法国神经科学家伊夫·弗雷尼雅克的文章聚焦于当前的一个流行趋势:开展耗资巨大的大型研究项目并收集海量的数据。对于弗雷尼雅克来说,这代表了脑研究的工业化——出资机构(以及研究人员)相信,“利用最新奇的工具并借助规模的力量,可以带来一些启示”。[4] 世界各地都有这样的项目,从美国(“脑计划”“人类连接组计划”等)到中国(“中国脑计划”),再到欧洲(“人脑计划”以及许多其他计划),还有澳大利亚和日本。矛盾的是,这些研究产生的海量数据反而正在成为脑研究进程中的主要瓶颈。对于造成这种情形的部分原因,弗雷尼雅克一针见血地指出是“大数据不等于知识”:
1700678252
1700678253 仅仅在二三十年前,神经解剖学和神经生理学的信息还相对稀缺,理解心智相关的过程似乎还可以实现。如今,我们已经淹没在了信息的洪流中。矛盾的是,我们所有对心智问题的整体理解都处于被冲走的极度危险之中。每一次技术上的突破都打开了潘多拉的魔盒,暴露出隐藏的变量、机制和非线性关系,把问题的复杂性提高到了新的水平。
1700678254
1700678255 对于这个问题,弗雷尼雅克没有给出直接的答案,只是提出了一系列建议,包括通过鼓励跨学科合作、专注于假设检验等方式来驾驭和丰富大数据项目,而不是单纯地收集大量信息。
1700678256
1700678257 尽管生产出的海量数据是新事物,但问题并不是新问题。1992年,帕特丽夏·丘奇兰德和泰瑞·谢诺夫斯基出版了著作《计算脑》(The Computational Brain )。他们在书中描述了感觉、可塑性和感觉运动整合的最新模型,但仍然认为在理论方面几乎没有什么进展:“几乎所有事情都有待完成,各个方面的重要谜题都若隐若现。”[5] 将近四分之一个世纪后,丘奇兰德的女儿、神经科学家安妮·丘奇兰德(Anne Churchland)做出了类似的判断。她与拉里·阿博特共同撰文,强调了我们解释世界各地实验室产生的大量数据时所面临的困难:“在这场科学攻坚战中,想要取得深刻的理解,除了需要巧妙和创造性地应用实验技术外,还需要更为先进的数据分析方法,以及对理论概念和模型的大量应用。”[6]
1700678258
1700678259 这些对更多理论的反复呼吁可能只是一种虔诚的希望。我们有理由相信,对脑功能的解释不可能只有单一的理论,即使在线虫中也不可能,因为脑不是一个单一的东西(科学家甚至很难对脑做出一个精准的定义)[7] 。正如克里克指出的那样,脑是一个进化和整合出的结构,在进化的过程中,脑的不同部分出现于不同的进化时期,以解决不同的问题。我们目前对脑运作机制的理解是非常片面的。例如,大多数有关感觉的神经科学研究都集中在视觉上,而不是嗅觉,因为嗅觉研究在概念上和技术上都更具挑战性。但无论是在计算方式上还是在结构上,嗅觉和视觉的工作方式都是不同的。通过聚焦视觉,我们对脑的功能以及它是如何运作的已经有了非常有限的理解。[8]
1700678260
1700678261 脑的本质是集成与复合同时存在,这可能意味着我们未来对脑的理解必然是支离破碎的,对不同的部分有不同的解释。毕竟,正如大卫·马尔所说的那样,脑是由“非常非常多”的信息处理装置组成的。丘奇兰德和阿博特明确地指出了个中的含义:“当我们建立起对脑的全面理解时,这种理解可能会很像一幅拼贴出的作品,由高度多样化的‘布片’松散地‘缝合’而成。”[9]
1700678262
1700678263
1700678264
1700678265
1700678266 半个多世纪以来,人们一直认为脑的信息处理过程与计算机的处理过程类似,所有对高度多样化的“布片”的研究都是基于这个想法。但这并不意味着这个隐喻在未来会继续有用。1951年,数字时代刚开始的时候,卡尔·拉什利就对使用任何基于机器的隐喻表示过反对:
1700678267
1700678268 皇家园林中的液压雕像令笛卡儿印象深刻,他因此发展出了脑活动的液压理论。从那以后,我们有了电话理论、电场理论,现在又有了基于计算机和自动方向舵的理论。我认为,通过研究脑本身和行为现象,我们更有可能发现脑是如何工作的,而不是沉溺于牵强附会的物理学类比。[10]
1700678269
1700678270 法国神经科学家罗曼·布雷特(Romain Brette)最近把这种对隐喻的排斥更进了一步,他挑战了脑功能最基本的隐喻——编码。[11] 自从阿德里安在20世纪20年代提出这个概念以来(最重要的是霍拉斯·巴洛在20世纪60年代对这个概念的热情推广),神经编码的想法已经主导了神经科学的思考。在过去的10年里,总共有超过11000篇关于这个主题的论文被发表。[12] 布雷特提出的批评的基本点是,在思考“编码”时,研究人员无意中从技术意义上偏移到了表征意义上,前者基于的是刺激与神经元活动之间的联系,而后者基于的则是神经元编码对刺激的表征。这个问题早在1990年就由沃尔特·弗里曼(Walter Freeman)和克里斯汀·斯卡尔达(Christine Skarda)提出了,当时他们发表了一篇题为《表征:谁需要它们?》(Representations: Who Needs Them?)的论文。[13] 弗里曼当时对气味引发的电生理反应已经开展了几十年的研究,他论述道,不再想着神经系统如何反映环境,他就能“更少地关注输入脑的有关外部世界的信息,更多地关注脑正在做什么”。神经系统表征或编码信息的观点还包含着更深一层的含义。正如丹尼特向克里克和科赫提出的问题指出的那样,这一切呈现给谁呢?
1700678271
1700678272 在大多数关于神经编码的描述中,一个没有被明确指出的意涵是,神经网络的活动是呈现给脑中的一个理想化的观察者或读者的,它们通常被描述为“下游结构”(downstream structure),能够以最佳的方式解码信号。但这些结构究竟是如何处理外周神经元的活动的,我们目前还不清楚,甚至在神经网络功能的简单模型中也很少有明确的相关假说。神经编码的处理过程通常被看作一系列线性的步骤——就像一连串的多米诺骨牌那样,在反射中尤其如此。然而脑是由相互连接并且高度复杂的神经网络组成的,这些神经网络与外部世界相连并产生行动。只关注一组感觉和处理神经元,而不把这些网络与动物的行为联系起来,就会忽略整个处理过程的关键点。“动作电位是产生动作的电位,”布雷特总结道,“而不是需要破译的象形文字。”
1700678273
1700678274 盖伊尔吉·布萨基在他的新书《由内而外的脑》(The Brain from Inside Out )中也提出了类似的观点。[14] 布萨基认为,脑并不是简单被动地接收刺激,然后通过神经编码来表征它们,而是通过积极地搜索各种可能性来测试各种可能的选择。基于赫尔姆霍兹和马尔的观点,他得出的结论是脑并不表征信息,而是在构建信息。
1700678275
1700678276 计算机、编码、连线图等神经科学隐喻必然是片面的,这是隐喻的本质。科学哲学家和科学家都对隐喻开展过深入的研究,因为它们似乎是科学家思维方式的核心。[15] 但隐喻也可以很丰富,协助科学家形成见解和做出发现。总会有那么一个时刻,它们带来的限制会超越它们促成的理解,但在脑的计算机隐喻和表征隐喻中,科学界对这样的时刻是否已经到来仍然无法达成一致意见。[16] 从历史的角度来看,出现了这样的争论就表明我们可能确实正在接近计算机隐喻的尾声,然而我们现在还不清楚它将被什么取代。
1700678277
1700678278 当科学家们意识到隐喻是如何塑造他们的观点的,并意识到新的类比可能会改变他们对自己工作的理解,甚至使他们能设计新的实验时,他们常常会兴奋不已。想出这些新的隐喻是很有挑战性的——过去出现的与脑相关的大多数隐喻都与新技术有关。这可能意味着,有关脑的有洞察力的新隐喻以及它们会发挥怎样的作用将取决于未来的技术突破,就像过去的液压动力、电话交换机以及计算机那样。目前还没有这种进展的迹象,虽然最近出现了很多科技流行词,比如区块链、量子计算(或者量子任何东西)、纳米技术等等,但这些领域不太可能引发技术变革或者我们对脑看法的变革。
1700678279
1700678280 互联网和云计算的出现使人们一度认为脑是某种分布式计算机系统(distributed computer system)。这是有道理的,因为我们的神经元并不像计算机里的简单组件。相反,神经元有无数的树突连接[17] ,其中许多涉及多种神经递质和细胞输出的细微差别,这使它们能执行高度复杂的过程,对应于所谓的线性不可分函数(linearly non-separable function)。对来自其他神经元的局部刺激,每个树突通过向胞体发放一个锋电位来做出反应,但这并不是通过一对一的线性方式进行的,而是通过不成比例地增加它们的放电频率来实现的。参与这项研究的研究者之一、英国神经科学家马克·汉弗莱斯(Mark Humphries)强调,这意味着每个细胞的行为方式都类似于一台复杂的迷你计算机。[18]
1700678281
1700678282 然而,这并不意味着云和互联网的类比对我们有很大的帮助。事实上,互联网的一个重要特点是,即使它的一些关键部分被移除(比如遭到了核打击),它仍然可以继续运行。从最早的形式开始,互联网就具备这一特点。虽然有非常确凿的证据证明可塑性的存在,也无论我们对脑活动的看法多么偏重分布式的观点,如果脑的某些特定区域受到损伤,脑功能的关键方面的确会被彻底破坏。
1700678283
1700678284
1700678285
1700678286
1700678287 我们的隐喻可能正在失去解释力的一个迹象是,人们普遍认为神经系统的功能(无论是龙虾的胃节律性地研磨食物还是人类的意识)只能被解释为涌现属性——那些你无法通过分析一个系统的组成部分来预测的东西,但它们却能以系统功能的形式出现。
1700678288
1700678289 理查德·格雷戈里在1981年指出,依赖涌现性来解释脑功能显示出科学界的理论框架存在问题:“‘涌现’的出现很可能是一个信号,表明我们需要一个更普遍的(或者至少是不同的)概念框架……好的理论的作用是避免引入涌现性。(因此基于涌现性的解释是虚假的。)”[19] 这忽略了一个事实——涌现性有不同的种类,有强有弱。弱的涌现性特征——如小鱼群对鲨鱼的反应——可以根据支配群体成员行为的规则来加以理解。在这种情况下,看似神秘的群体行为是以一个个动物个体的行为为基础的,每一只动物都在对某种因素(如毗邻动物的运动)或者外部刺激(如靠近的捕食者)做出反应。
1700678290
1700678291 这种弱涌现性不能解释龙虾胃的蠕动,更不可能解释人脑的功能。要解释这些现象,我们需要求助于强涌现性。在强涌现性中,涌现的现象无法用单个组成部分的活动来解释,它们有自己要服从的法则。你和本书的这一页纸都是由原子组成的,但你的阅读和理解能力来自原子在你身体中形成的更高层次结构所产生的特征,比如神经元和它们的放电模式,而不仅仅是来自原子间的相互作用。一些神经科学家最近批评强涌现性有引发“形而上学上的难以置信”(metaphysical implausibility)的危险,因为对于这种涌现是如何发生的,既没有明确的因果机制,也没有任何解释。这些批评者和格雷戈里一样,声称依靠涌现性来解释复杂现象表明神经科学正处于一个关键的历史转折点,就像炼金术慢慢转变为化学的那个时期一样。[20] 但面对神经科学的诸多谜团,我们往往只能诉诸涌现性。而且涌现性也并不是像看起来那么“傻”:深度学习程序的惊人特性在本质上就是涌现属性,而设计这些程序的人根本无法解释这些特性。
1700678292
1700678293 有趣的是,虽然有些神经科学家对涌现性的形而上学感到困惑,人工智能的研究者却陶醉于这个想法中。他们认为,现代计算机的高度复杂性或者它们通过互联网建立的互联性将推动一个关键转折点的到来,这个夸张的转折点被称为奇点。那时,机器将变得具有意识。关于这种可能性,有很多虚构作品做了探索。在这些作品中,对所有相关的人来说,事情往往都以糟糕的结局告终。这个主题当然会激发公众的想象力,但除了我们对意识如何运作的无知外,没有其他理由可以让我们相信这种可能性会在不久的将来出现。从原理上讲,这肯定是可能的,因为我们的现有假说认为心智是物质的产物,因此我们应该能够在一个装置中模仿它。但即使是最简单的脑,其复杂程度也足以令我们目前所能想象的任何机器相形见绌。在未来的几十年甚至几个世纪里,奇点都只会出现在科幻小说而不是科学中。
[ 上一页 ]  [ :1.700678244e+09 ]  [ 下一页 ]