1700681767
大脑整理术 神经元和神经递质简介
1700681768
1700681769
在所有这些叶、半球和模块之间有1 000亿个神经元随时待命。它们聚集在一起,如果不能通过与邻近神经元协同工作来发挥作用,它们就会死亡。每个神经元有能力与大约1万个其他神经元保持连接,这些连接会随着你学到的新东西而改变,比如打网球时挥拍的一个新动作、一种新语言或者一家新超市的陈列布局。
1700681770
1700681771
神经元的功能部分依赖于化学作用,部分依赖于时断时续的脉冲放电激活。神经元相互之间通过发送神经递质这种化学信号,跨越突触的间隙进行交流。这就是一个神经元激发另一个神经元的方法。大脑中存在着60多种神经递质,有些会让你兴奋起来,有些会让你心情平静。突触有许多不同的形状和大小,它们会随着你学到的新东西而改变。
1700681772
1700681773
两种神经递质承担了大脑中80%左右的信号传递:使你兴奋并能激发活跃性的谷氨酸和具有抑制作用并能减弱活跃性的γ–氨基丁酸。谷氨酸在大脑中就是一个做苦力的角色。它在两个原来没有联系的神经元之间传递信号,为以后的活动注入能量。这种联系保持活跃的时间越长,这些神经元之间的连接就越强烈。与此相反,γ–氨基丁酸在你必须冷静时能让你安静下来,它的作用相当于某些药品,比如地西泮和劳拉西泮,二者都是治疗焦虑症的特效药。你需要用γ–氨基丁酸的活性来抑制焦虑情绪,但你不需要吃药,对此我会在第6章进行阐述。
1700681774
1700681775
虽然谷氨酸和γ–氨基丁酸是主要的神经递质,但还有大量其他递质在你的大脑中发挥着重要作用。它们的活动在神经元之间的活动中只占到一小部分,但它们对那些神经元的影响力却很大。人们对它们进行了广泛的研究,发明了许多药品以便对它们施加影响。
1700681776
1700681777
人们对3种神经递质——血清素、去甲肾上腺素和多巴胺——的研究最多。因为它们改变了受体的敏感度,让神经元的效率更高或者引导神经元产出更多的谷氨酸,所以它们有时被称为神经调质。通过边工作边覆盖进入突触的其他信号,它们还能帮助减少大脑中的“噪声”。然而,有时它们也会增强其他信号。这3种神经递质要么直接采取行动,比如谷氨酸和γ–氨基丁酸,要么对在突触中正在处理的信息流进行微调。
1700681778
1700681779
由于像百忧解等药品的广泛使用,血清素引起了人们更多的关注。血清素对于调节情绪基调和许多不同的情绪反应具有一定的作用,它的含量低与焦虑、抑郁甚至强迫症都有关。
1700681780
1700681781
血清素有利于保证大脑的活力处于可控状态,它就像一个交通警察。我们通常会听到那些服用百忧解等药品的人说,“事情不再像过去那样让我心烦了”。然而,不利的一面也是存在的,这些药品通常让人如此平静,以至于人们会说:“过去,夕阳的美景会让我很感慨,但现在我对它无动于衷。”
1700681782
1700681783
去甲肾上腺素有激活注意力的功能,它使影响知觉、觉醒和动机的信号更强烈。就像血清素一样,去甲肾上腺素也与情绪和精神沮丧有关系,马普替林和维斯塔这些药品的作用就是要达到这样的功效。
1700681784
1700681785
多巴胺有助于提升和加强注意力。它也与奖励、运动和学习相关,而且它是对愉快的情绪进行编码的主要神经递质之一。当要表达愉快的情绪时,多巴胺会激活伏隔核,有时这个区域也被称为愉快中枢。伏隔核的激活被认为与吸毒、赌博和其他成瘾行为有关。当这一区域被频繁激活时,被激活的行为就很难停下来。
1700681786
1700681787
激活多巴胺的药品常用来治疗多动症,比如哌甲酯。服用哌甲酯或者类似药品的人通常都是儿童和青少年。服用这些药品后,他们不但注意力比过去集中,心情也比原来更平静了。
1700681788
1700681789
1700681790
1700681791
1700681793
大脑整理术 神经可塑性的功能
1700681794
1700681795
近20年来,大量的证据表明突触不是硬连接的,而是总在变动之中,这就是突触可塑性或者神经可塑性的含义。神经元之间的突触是可塑的。
1700681796
1700681797
神经可塑性使得增强记忆成为可能。我将会用一章的篇幅讲述增强记忆力的方法。但是现在的要点是当你记忆新东西时,大脑就会改变它的突触。如果是硬连接,大脑将记不住任何新的东西。因此,记忆新事物就要重新连接大脑。通过在想法或图像之间制造联系,你就将为那些想法和图像进行编码的不同的神经元联系了起来。
1700681798
1700681799
神经可塑性证明了“用进废退”的道理。当你连接上体现某项技能的突触时,你就是在强化这项技能;而当你使其处于休眠状态时,你就是在弱化那些联系。同样的道理,如果你停止运动,你的肌肉就会变得松弛。
1700681800
1700681801
“同时激发则会同时连接的神经元”恰如其分地描述了当你拥有新的经历时大脑的重塑方式。如果你更多地采用一种特殊的方式做事、用特殊口音讲一些词语或者记住你的某些往事,同时激发并使这些行为发生的神经元就会强化彼此之间的联系。神经元同时激发的次数越多,将来它们被同时激发的可能性就越大。
1700681802
1700681803
就像“同时激发则会同时连接的神经元”变成了神经科学的一句口头禅一样,与它相反的一句话“分别激发则会分别连接的神经元”也应运而生。它表明,受刺激不同步激发的神经元就不会形成连接。这是神经系统学对遗忘现象所进行的解释。
1700681804
1700681805
换句话说,如果你做某件事情的次数越多,你做得就越熟练。这就是棒球运动员为什么要练习击球,高尔夫球选手为什么要去练习场,以及钢琴家为什么要连续几个小时练习弹奏的原因。思考的道理也是一样。你想你的姑姑玛蒂尔达的次数越多,她就会越多地在你的脑海中显现,一次又一次。重复重塑了你的大脑,并且养成了习惯。
1700681806
1700681807
若神经元经常被同时激发,那么它们将来就会以更快的速度被同时激发。这会促进效率的提升,因为需要展示一项特殊技能的神经元更为固定。例如,当你学习骑自行车时,因为摇摇晃晃,最初你会使用较多的肌肉和神经元。之后,一旦你的车技有了进步,肌肉做出的贡献就会减少,所需的神经元数量也会减少,你骑车就会更顺畅,速度就会更快。那些同时被激发的神经元已经结成了群,并且同时连接起来。
1700681808
1700681809
随着你在某项特殊技能上表现出更多的才干,你的大脑就会为其留出更大的空间。哈佛医学院的阿尔瓦罗·帕斯夸尔·利昂利用经颅磁刺激法测量皮层的特殊区域。他研究了阅读盲文的盲人,发现他们用来“阅读”的手指的皮层图要比其他手指的皮层图大,也比普通阅读者的手指皮层图大。换句话说,他们用来阅读的手指的敏感性要求大脑腾出更多的空间。因此,这种带有培育性质的动作强化了神经可塑性,它在大脑中创造出了额外的空间。
1700681810
1700681811
还有另外一个表现神经可塑性力量的案例。研究人员对弹奏弦乐器的专业音乐人士进行了测试,以便观察他们的大脑是否扩展出更多的空间以进行重塑。感觉运动带是大脑中部控制运动和身体感受的区域,比较弦乐器演奏者和普通人,发现惯用右手的演奏者的大脑中控制右手指的感觉运动带的空间大小与普通人无异。然而,惯用右手的演奏者的大脑中掌控左手指活动的区域却与普通人表现出了明显的差异。对于专业音乐人士来说,左手指必须敏捷和灵巧到可以做出所有的弹奏动作。那些专业音乐人士大脑中控制演奏的手指的皮层空间要比非专业音乐人士的大很多。如果专业音乐人士在12岁之前便开始弹奏乐器,这种差异将达到最大。换句话说,尽管这种依赖练习的神经可塑性的行为是在成年时期发生的,但如果弹奏乐器的人开始弹奏的时间较早、时间更长,这种差异就会大得惊人。
1700681812
1700681813
不仅行为可以借助神经可塑性改变大脑结构,就算只是思考或想象某种行为也能改变大脑结构。例如,研究人员已经证明,只是想象一系列的钢琴弹奏动作,也会导致大脑中与弹奏钢琴的手指运动相关的区域产生神经可塑性。因此,单单是心智练习就可引发大脑的重塑。
1700681814
1700681815
[
上一页 ]
[ :1.700681766e+09 ]
[
下一页 ]