1700878593
实验物理学研究的是自然界的局部
1700878594
1700878595
在亚宇宙系统建模过程中,我们忽略了子系统外的一切事物,好像宇宙中就这个子系统存在,我们称这样的系统为“孤立系统”(isolated systems)。但是,我们不应该忘记,完全孤立并不存在。正如之前我们提到的,在真实世界中,子系统与外界事物间总是存在着相互作用。从各种意义上讲,亚宇宙系统本质上是物理学家所谓的“开放系统”(open systems)。这类系统都有边界,边界内的事物与边界外的事物互动。因此,当进行盒中物理学研究时,我们将开放系统近似为孤立系统。
1700878596
1700878597
实验物理学家花费了大量精力将开放系统改造为(近似的)孤立系统。这类改造并不完美。一方面,当对系统进行测量时,我们影响了系统。(对于量子力学诠释来说,这是个大问题;现在让我们将关注的焦点放在宏观世界。)对每一个实验来说,并不完美的孤立系统总是或多或少地受到外界噪声的影响。实验物理学家费劲全力,试图从噪声中提取需要的数据。他们还要花费大量精力说服同行和自己:他们确实将噪声降到了最低,并从中看到了信号。
1700878598
1700878599
外部环境中的振动、辐射以及活跃其中的各种场,可能污染我们的实验系统,我们必须将它们隔离。对许多实验来说,能做到这一步已经足够了。对某些非常敏感的实验来说,落入探测器的宇宙射线可能对实验结果产生影响。为了屏蔽宇宙射线,这些实验的实验室通常架设在地表数公里之下的矿井中。太阳中微子的发现,就属于这类实验。太阳中微子实验将其他所有背景噪声降至可控水平,只让中微子通过。但我们目前尚未发现能够屏蔽中微子的方法。在南极的冰立方实验中,深埋于冰层下的探测器记录到了自北极而来的中微子。这些中微子纵贯了整个地球。
1700878600
1700878601
或许你确实可以建造一座星际尺度的厚墙来屏蔽中微子,但仍然有一种东西能轻松地穿过这道屏障,这便是引力。从理论上来说,没有东西可以屏蔽引力,也没有什么可以阻止引力波的传播。因此,完美的孤立系统不可能存在。我在攻读博士期间发现了这个重要观点。当时,我想设计一个盒子,让引力波在其中来回震荡。可引力波总能穿透盒子的壁,我的尝试屡屡失败。为了反射引力波,我便想象不断增加壁的密度。但在我达到所需密度之前,致密的壁就已经坍缩成了黑洞。我反复思量,试图寻找其他办法,最终却一无所获。我意识到这道我无法跨越的障碍本身就是个有趣的发现,甚至比我最初的设想要有趣得多。经过更为缜密的思考,我借由几个简单的假设证明,不存在可以屏蔽引力波的厚墙壁。[7]这一结论对任何材质、任意厚度的墙壁都成立。证明过程中我所用的假设就只有两条:一是在广义相对论中,物质所含的能量总是为正;二是声速总是小于光速。
1700878602
1700878603
以上论述表明,无论是从原则上来说还是从实际操作中来说,自然界中的系统都无法摆脱系统外宇宙的影响。这一结论非常重要,值得上升为一个原则,就让我们称它为“孤立系统的不存在性”(principle of no isolated systems)。
1700878604
1700878605
还有一个原因使我们相信,所谓孤立系统仅仅是开放系统的近似:我们无法预期针对系统的随机破坏性干扰。我们可以预期噪声、测量噪声、降低噪声,但外部世界对系统的破坏可能比噪声要糟得多:坠毁的飞机可能撞进实验室,地震可能震倒实验室,小行星可能撞击地球,地球可能被一片飘过的暗物质云拉向太阳,[8]地下室的电闸可能发生意外导致整个实验室断电……在这个庞大的宇宙中,能破坏实验进程的突发事件不计其数。当我们设计实验,并将其作为孤立系统考虑时,实际上是将以上可能全部排除掉了。
1700878606
1700878607
想要把这种种可以摧毁实验室的外部因素一并考虑在内,我们需要对宇宙整体进行建模。在实际建模或计算过程中,我们肯定不会去考虑这些可能性,否则我们什么研究都做不了。而不去考虑这些可能性,原则上就意味着我们的物理构建于某种近似之上。
1700878608
1700878610
有效理论本质上是近似理论
1700878611
1700878612
物理学中的主要理论,都是研究局部自然世界的模型。这些局部系统,正是实验物理学家能够制造的对象。当理论学家发明这些理论时,都将它们视作是这样那样的终极理论。但随着时间的推移,理论学家终于意识到它们只是有效理论,只能描述宇宙中的一小部分自由度。
1700878613
1700878614
粒子物理学为我们提供了有效理论的极佳范例。到目前为止,实验粒子物理学家试图在极小的尺度上探索终极物理。目前,这一纪录由欧洲核子研究中心(CERN)的大型强子对撞机(LHC)保持,LHC的最小可探测精度达到10-17厘米。到目前为止,粒子物理学标准模型与这一精度以上的实验数据都符合得很好。但这也意味着,标准模型只是一个近似模型(另一个理由是,标准模型不包含引力)。如果我们能探索更小的尺度,我们或许会发现某些标准模型以外的新现象。
1700878615
1700878616
根据量子力学中的不确定性原理,探测的尺度与能量成反比。想要探索某个特定的小尺度,我们需要把粒子或光子加到与之对应的能量。探测尺度越小,所需要的能量就越高。因此,我们能够探索的最小尺度决定了我们能够探索的最高能量。然而,能量和质量是同一回事(依据狭义相对论)。如果我们的探索存在一个最高能量,就意味着比这能量更高的粒子由于过重,而不能被加速器制造,因而会被忽略。在这些被忽略的现象中,可能包含新的基本粒子,可能包含未知的相互作用。又或许它们会告诉我们量子力学的原理有问题,想要描述极短距离或极高能量的现象,我们需要对其作出一些修正。
1700878617
1700878618
正是由于以上考虑,我们称标准模型为有效理论,它在特定能量区间与实验观测相符。
1700878619
1700878620
有效理论的提出颠覆了一些老掉牙的观念,比如说真理的标志是理论的简洁与优美。我们不知道在更高的能量上到底潜伏着什么现象,在更低的能量上,许多高能假说都能和这个或那个有效理论相容。因此,有效理论有着一种内在的简洁,它们可以通过一种最为简单、最为优雅的方式延伸至未知领域。之所以说广义相对论和标准模型优雅,很大程度上是因为它们可以被理解为有效理论,它们的美是理论有效性和近似性的产物。这样看来,简洁、优美并不是真理特有的标志,而是构造良好的近似模型特有的标志。[9]
1700878621
1700878622
有效理论的提出意味着粒子物理学的成熟。年轻的我们浪漫地幻想,自然界的终极定律已经握在我们手上。在致力于发展标准模型数十年后,我们一方面非常确信标准模型在特定能区一定正确,另一方面又非常不确信标准模型是否能被外推到这一能区以外。这是不是很像一个人的一生?当我们上了年纪时,我们会更加确信自己真的知道什么,同时也会更坦然地承认自己到底不知道什么。
1700878623
1700878624
对有些人来说,这多少让人觉得失望。人们寄希望于物理能够发现自然界的终极定律,但从定义上来看,有效理论注定不会是终极定律。你或许会想,一个理论怎么可能既被所有的实验所验证,却又充其量不过是某个真理的近似。那么你的科学观就太过天真了。有效理论的概念非常重要,它表达了以上矛盾的微妙交集。
1700878625
1700878626
有效理论也体现了我们了解基本粒子的进程。它告诉我们,物理学就是一个不断构建更好的近似理论的过程。当我们将实验推向更小尺度、更高能量时,或许我们将发现新的现象。如果我们真能有所发现,那我们就需要一个新的模型来描述它们。这个新的模型也会是一个有效理论,就像适用范围变大了的标准模型。
1700878627
1700878628
在物理学的发展过程中,新的理论往往会革命性地改变我们对自然的理解,同时又会保持旧理论的成功之处。有效理论告诉我们的正是这一点。现在我们认为牛顿力学是个有效理论,它只适应于低速、经典的物理过程。在这个区域内,牛顿力学还是一如往昔般成功。
1700878629
1700878630
过去,广义相对论曾被视作对自然的终极描述,现在人们也把它理解为有效理论。至少从一个方面来看,它不适用于量子领域。广义相对论充其量是某个大统一理论的近似。或许,我们可以通过截断某个更为基本的引力理论来获得广义相对论。
1700878631
1700878632
同样,量子力学似乎也是某个更为基本的物理理论的近似。其中一个迹象是,量子力学中的方程都是线性的。线性意味着它们产生的效应总是与原因成正比。物理学的其他领域也有线性方程,但这些线性方程都是某个更为基本的理论(尽管还是有效理论)的非线性方程(产生的效应数倍于输入原因)的近似。基于这些经验,我们应该相信量子力学也是如此。事实上,我们目前所有的物理理论都是有效理论。人们冷静地意识到,这些理论之所以成功,正是因为它们是近似理论。
1700878633
1700878634
我们依然可以胸怀壮志,去发明一套没有近似的终极理论。然而,历史和逻辑告诉我们,至少在牛顿范式的框架中,这样行不通。尽管牛顿力学、广义相对论、量子力学、标准模型等令人敬畏,但它们都不可能通往终极的宇宙学理论。想要获得这样的理论,就必须认真考虑宇宙学挑战,设计一套牛顿范式之外的理论,一套无须借助近似就可以应用于整个宇宙的理论。
1700878635
1700878636
1700878637
1700878638
1700878640
时间重生:从物理学危机到宇宙的未来
1700878641
[
上一页 ]
[ :1.700878592e+09 ]
[
下一页 ]