打字猴:1.700937702e+09
1700937702 通俗天文学:和大师一起与宇宙对话(全彩四色珍藏版) [:1700937092]
1700937703 第三章 折反射望远镜
1700937704
1700937705 折反射望远镜出现于1814年,顾名思义,它是由折射元件和反射元件组成的。哈密尔顿提出在透镜组中间加入反射面,以增加光焦度,这样就能用一般的玻璃得到色差改正比消色差物镜更好的望远镜。
1700937706
1700937707 1931年,德国光学家施密特别出心裁地用一块接近于平行板的非球面薄透镜作为改正镜,与球面反射镜配合,制成了可以消除球差和轴外像差的折反射望远镜。这种望远镜就是施密特望远镜,它视场大、像差小,适合于拍摄大面积的天区照片,尤其对暗弱星云的摄影效果非常突出。
1700937708
1700937709 1940年马克苏托夫制作出了另外一种折反射望远镜。他用一个弯月形状透镜作为改正透镜,制成了另一类折反射望远镜,它的两个表面是两个曲率不同的球面,相差不大,但曲率和厚度都很大。它的所有表面均为球面,比施密特望远镜的改正板容易磨制,镜筒也比较短,但视场比施密特式望远镜小,对玻璃的要求也高一些。
1700937710
1700937711 折反射望远镜特别适合于业余的天文观测和天文摄影。现在,施密特望远镜和马克苏托夫望远镜已经成了天文观测的重要工具。
1700937712
1700937713 通俗天文学:和大师一起与宇宙对话(全彩四色珍藏版) [:1700937093]
1700937714 第四章 望远镜摄影术
1700937715
1700937716 天文学的最大进步之一便是摄影术在天体研究上的应用。回到19世纪40年代,纽约的德雷珀(Draper)成功完成了一张月亮的银板照相(daguerreotype)。利用更进步的发明,哈佛天文台的邦德(Bond)和纽约的卢瑟福(Rutherford)开始把这项技术应用到月亮星辰上面去。这些先驱的企图当然不能与现代的天体摄影相媲美,但是卢瑟福所摄的昴星团及其他星团的相片到现在还有天文学的价值,也就可见他们的成功了。
1700937717
1700937718 为星辰照相是可以用普通照相机的,只要我们把它安置得像一架赤道仪一样可以追随星辰的周日视运动。几分钟的曝光便可以拍摄到比肉眼所见更多的星了——事实上用大照相机的拍摄是连一分钟也用不到的。可是天文学家平时所用的却是一种摄影望远镜。普通摄影机自然也能用,只要加上相当的改善装置,但为了得到最好的效果,望远镜的物镜必须造得使紫光蓝光到同一焦点,因为这种光是摄影底片最敏感的。
1700937719
1700937720 为摄影而设计的折射望远镜常做得比同口径的目视望远镜要短些,为的是可以同时多见更大的天空。同时为了使大视野的像更清晰并减少颜色的模糊,其中的物镜常是两重的,便是所谓的“双分离物镜”(doublet),例如巴纳德(Bamard)用来成功实现他的举世无双的银河及彗星摄影的布鲁斯双分离物镜(Bruce doublet)。而哈佛天文台的61厘米双分离物镜,曾经大大增加了我们对于南半天球的知识。只要物镜充分消去色散以后,折射望远镜是既可以目视又可用作摄影研究的。
1700937721
1700937722 在今日说来,摄影底片已大量地代替了眼睛用在望远镜上了。晴朗的天空被用作大量的摄影,而这些永久的记录又便于精密的研究。常常在一个特别有趣的天体(例如新行星或新星)发现以后,天文学家还可以在早先的该部分天空影片中寻找发现前许多年的历史。发现冥王星时的情形便是这样。
1700937723
1700937724 古代的天文学家记录太阳黑子、日食、行星、彗星、星云及其他天体的现象都用尽可能正确的图画。这些图画要长时间才能制成,其中还有艺术家个人的偏见。有时两位天文学家对同一天体的两张画竟互不相似,或者到后来又发现与原先的也大不相同。用摄影术我们可得到更真切的天体的影像,而且常常需要的时间更短。
1700937725
1700937726 天体摄影最大的优点是在长时间的曝光之后,底片上可得到许多肉眼看不大清楚或简直看不见的情形。譬如说,有些星云在照片中很明显,眼睛却在最大的望远镜中也不能看见。对一个极其暗弱的天体摄影需要若干小时的曝光,需要望远镜的活动部分移动得异常准确,需要天文学家的技术与耐性,这才能得到一张清晰的图画。
1700937727
1700937728 光电耦合器件CCD的应用,使照相底片也成为了历史。CCD可对天体进行实时观测,量子效率更高,拥有照相底片所没有的许多优点。
1700937729
1700937730 通俗天文学:和大师一起与宇宙对话(全彩四色珍藏版) [:1700937094]
1700937731 第五章 大型光学望远镜
1700937732
1700937733 凯克望远镜(Keck Ⅰ,Keck Ⅱ)
1700937734
1700937735 凯克望远镜是当前世界上已投入工作的口径最大的光学望远镜之一,Keck Ⅰ和Keck Ⅱ分别在1991年和1996年建成,它们配置完全一样,而且都放置在夏威夷的莫纳克亚,用于干涉观测。它的名字源于为它捐赠建造经费的企业家凯克(W.M.Keck)。
1700937736
1700937737 它们的口径都是10米,由36块六角镜面拼接组成,每块镜面口径均为1.8米,而厚度仅为10厘米,通过主动光学支撑系统,使镜面保持极高的精度。焦面设备有三个:近红外照相机、高分辨率CCD探测器和高色散光谱仪。
1700937738
1700937739 “凯克这样的大望远镜,可以让我们沿着时间的长河探寻宇宙的起源,甚至能让我们一直向回看,看到宇宙最初诞生的时刻。”
1700937740
1700937741 欧洲南方天文台甚大望远镜(VLT)
1700937742
1700937743 欧洲南方天文台自1986年开始研制由4台8米口径望远镜组成一台等效口径为16米的光学望远镜。这4台8米望远镜排列在一条直线上,它们均采用地平装置,主镜采用主动光学系统支撑,指向精度为1秒,跟踪精度为0.05秒,镜筒重量为100吨,叉臂重量不到120吨。这4台望远镜可以组成一个干涉阵,做两两干涉观测,也可以单独使用每一台望远镜。
1700937744
1700937745 大天区面积多目标光纤光谱望远镜(LAMOST)
1700937746
1700937747 LAMOST是中国于2008年10月建成的一架有效通光口径为4米、焦距为20米、视场达20平方度的中星仪式的反射施密特望远镜。它把主动光学技术应用在反射施密特系统,在跟踪天体运动中作实时球差改正,实现大口径和大视场兼备的功能。LAMOST的球面主镜和反射镜均采用拼接技术,并且采用多目标光纤的光谱技术,光纤数可达4 000根,而一般望远镜只有600根。LAMOST将极限星等推到20.5等,比SDSS计划(美国斯隆数字巡天计划)高2等左右。
1700937748
1700937749 该望远镜已于2010年4月17日被正式冠名为“郭守敬望远镜”。
1700937750
1700937751 通俗天文学:和大师一起与宇宙对话(全彩四色珍藏版) [:1700937095]
[ 上一页 ]  [ :1.700937702e+09 ]  [ 下一页 ]