1701065408
混沌思想带来的革命
1701065409
1701065410
在这一章我们看到,混沌的发现使得科学的许多核心原则被重新加以思考。这里我总结一下这些新思想,19世纪的科学家几乎没人会相信这些。
1701065411
1701065412
◆看似混沌的行为有可能来自确定性系统,无须外部的随机源。
1701065413
1701065414
◆一些简单的确定性系统的长期变化,由于对初始条件的敏感依赖性,即使在原则上也无法预测。
1701065415
1701065416
◆虽然混沌系统的具体变化无法预测,在大量混沌系统的普适共性中却有一些“混沌中的秩序”,例如通往混沌的倍周期之路,以及费根鲍姆常数。因此虽然在细节上“预测变得不可能”,但在更高的层面上混沌系统却是可以预测的。
1701065417
1701065418
总的来说,变化、难以预测的宏观行为是复杂系统的标志。动力系统理论为刻画其行为提供了数学词汇表,例如分叉、吸引子以及系统变化方式的普适特性。这些词汇在复杂系统的研究中频繁出现。
1701065419
1701065420
逻辑斯蒂映射是种群数量增长的简化模型,但是对其以及类似模型的详细研究却带来了对秩序、随机和可预测性的重新认识。这证明了理想模型(idea models)的力量——这些模型很简单,用数学或计算机就足以进行研究,但是又抓住了自然界复杂系统的本质。理想模型在这本书中,乃至整个复杂系统科学中都扮演了重要角色。
1701065421
1701065422
刻画复杂系统的动力学还只是理解它的第一步。我们还要理解这些动力系统如何被用在生命系统中以处理信息和适应环境变化。后三章会针对这些主题给出一些背景知识,然后我们再来看看从动力学中得到的思想如何与信息论、计算和进化结合起来。
1701065423
1701065425
第3章 信息
1701065426
1701065427
我认为,熵增定律 [35] ——热力学第二定律——在自然界的定律中具有至高无上的地位……如果你的理论被发现违背了热力学第二定律,你就一点希望都没有,结局必然是彻底崩塌。
1701065428
1701065429
——爱丁顿爵士(Sir Arthur Eddington),《物理世界的本性》(Te Nature of the Physical World)
1701065430
1701065431
讨论复杂系统时经常会说到“自组织”:例如,行军蚁搭建的桥;萤火虫的同步闪动;经济系统中相互维系的市场;干细胞发育成特定的器官——这些都是自组织的例子。与通常情形中的有序消退、无序(熵)增长相反,这里是有序从无序中产生。
1701065432
1701065433
复杂系统科学最关注的问题就是这种逆熵的自组织系统是如何可能的。不过要着手这个问题,还要先了解一下什么是“有序”和“无序”,以及人们如何看待对这种抽象性质的度量。
1701065434
1701065435
许多复杂系统学家用信息的概念来刻画和度量有序和无序、复杂性和简单性。免疫学家科恩(Irun Cohen)曾说,“复杂系统比简单系统更能接收、存储和利用信息”。 [36] 经济学家贝哈克(Eric Beinhocker)写道,“进化不仅只会用DNA耍把戏, [37] 对所有能处理和存储信息的系统也可以”。物理学家盖尔曼(Murray Gell-Mann)在讨论复杂系统理论时则说,“虽然它们的物理属性很不相同, [38] 但它们处理信息的方式却是类似的。这个共性也许是对它们进行研究最好的起点”。
1701065436
1701065437
但是“信息”到底是什么呢?
1701065438
1701065440
信息是什么
1701065441
1701065442
现在“信息”一词随处可见:信息革命、信息时代、信息技术(常常简化为IT)、信息高速公路,诸如此类。信息在口语中被用来泛指所有表示知识或事实的媒介:报纸、书籍,我母亲在电话里唠叨家里的亲人,还有现在大行其道的万维网。专业点说,信息描述了一大类现象,从在万维网上通过光纤传送的信号,到大脑中在神经元之间传递的微小分子。
1701065443
1701065444
在第1章中提到的那些复杂系统的例子无一例外都涉及以各种形式交流和处理信息。进入计算机时代后,科学家们开始想到信息的传递和计算不仅仅发生在电子电路中,在生命系统中也同样存在。
1701065445
1701065446
要理解这些系统中的信息和计算,首先当然要对信息和计算这两个术语的意义有精确的定义。两者都是到20世纪才在数学上被定义。让人吃惊的是,两者居然都是从19世纪末的一个物理难题发展而来,这个难题中有个非常聪明的“小妖”,它似乎不用耗费任何能量就能做很多事情。这个难题曾让物理学家们非常担心,以为他们的基本定律可能哪里错了。信息的概念是如何拯救这一切的呢?在了解这些之前,我们先要了解一点关于能量、功和熵等物理概念的背景。
1701065447
1701065449
能量、功、熵
1701065450
1701065451
对于信息的科学研究始自热力学,热力学描述能量以及其与物质的相互作用。19世纪的物理学家认为宇宙是由物质(固体、液体、气体,等等)和能量(热能、光能、声能,等等)组成。
1701065452
1701065453
能量大致上可以定义为系统“做功”的潜力,这符合我们对能量的直观感觉,特别是在这个精力十足的工作狂的时代。英语中能量(energy)一词源自古希腊语中的energia,字面意思是“工作”。不过在物理学中,对一个物体做的“工作”有特定的含义:对物体施加力的大小乘以物体沿力的方向前进的距离。
1701065454
1701065455
打个比方,假设你的车在路上抛锚了,你不得不自己把车推到最近的加油站。用物理学的话讲,你做的功等于你推车的力的大小乘以到加油站的距离。在推车的过程中,你将你体内储存的能量转化成了车的动能,而转化的能量就等于所做的功加上轮子与地面摩擦消耗的热量以及你自己体温升高所耗费的热量。这个热量损失可以用熵度量。熵是对不能转化成功的能量的度量。“熵(entropy)”一词源自另一个古希腊词汇——“trope”——意思是“变成”或“转化”。
1701065456
[
上一页 ]
[ :1.701065407e+09 ]
[
下一页 ]