打字猴:1.701065448e+09
1701065448 复杂 [:1701064730]
1701065449 能量、功、熵
1701065450
1701065451 对于信息的科学研究始自热力学,热力学描述能量以及其与物质的相互作用。19世纪的物理学家认为宇宙是由物质(固体、液体、气体,等等)和能量(热能、光能、声能,等等)组成。
1701065452
1701065453 能量大致上可以定义为系统“做功”的潜力,这符合我们对能量的直观感觉,特别是在这个精力十足的工作狂的时代。英语中能量(energy)一词源自古希腊语中的energia,字面意思是“工作”。不过在物理学中,对一个物体做的“工作”有特定的含义:对物体施加力的大小乘以物体沿力的方向前进的距离。
1701065454
1701065455 打个比方,假设你的车在路上抛锚了,你不得不自己把车推到最近的加油站。用物理学的话讲,你做的功等于你推车的力的大小乘以到加油站的距离。在推车的过程中,你将你体内储存的能量转化成了车的动能,而转化的能量就等于所做的功加上轮子与地面摩擦消耗的热量以及你自己体温升高所耗费的热量。这个热量损失可以用熵度量。熵是对不能转化成功的能量的度量。“熵(entropy)”一词源自另一个古希腊词汇——“trope”——意思是“变成”或“转化”。
1701065456
1701065457 在19世纪末,两条关于能量的基本定律——也就是热力学定律——被发现了。这些定律所针对的是“封闭系统”——它们与外界没有能量交换。
1701065458
1701065459 第一定律:能量守恒。宇宙中的总能量守恒。能量可以从一种形式转化成另一种形式,比如从体内储存的能量转化成推车的动能加上消耗的热能。但是能量既不能被创生也不能被消灭。因此说是“守恒的”。
1701065460
1701065461 第二定律:熵总是不断增加直至最大。系统总的熵会不断增加,直至可能的最大值;除非通过外部做功,否则它自身永远也不会减少。
1701065462
1701065463 你可能曾注意过,房间不会自己变干净,饮料如果泼到地上,永远也不会回到杯子里。要想将无序变成有序,就得额外做功。
1701065464
1701065465 此外,能量转化的时候,比如前面推车的例子,总是会产生一些不能做功的热能。这也就是为什么没法将你家冰箱后面产生的热量转化成电力再来驱动你的冰箱。这也解释了为何永动机是不可能的。
1701065466
1701065467 热力学第二定律被认为是定义了“时间之箭”,因为它证明了存在时间上不可逆的过程(比如,热量自发地回到你的冰箱,并转化成电能进行制冷)。“未来”可以定义为熵增的时间方向。有趣的是,热力学第二定律是唯一区分过去和未来的基本物理定律。其他物理定律在时间上都是可逆的。比如,假设可以将电子等基本粒子的相互作用拍成电影,然后给物理学家播放这段电影。如果将电影倒放,然后问物理学家哪个版本是“真实”版本。物理学家肯定猜不出来,因为不管是正放还是倒放,其中的相互作用都没有违反物理定律。这就是可逆的含义。但是如果你用红外胶片拍下冰箱释放热量的过程,然后正放和倒放,物理学家将能辨别出正放的那个是“正确的”,因为遵守了第二定律,而倒放的则没有遵守。这也就是不可逆的含义。为什么第二定律会与众不同呢?这个问题很深奥。就像物理学家罗斯曼(Tony Rothman)所指出的,“为什么第二定律能区分过去和现在,  [39]  而其他自然定律却不能?这也许是物理学中最大的谜团”。
1701065468
1701065469 复杂 [:1701064731]
1701065470 麦克斯韦妖
1701065471
1701065472 英国物理学家麦克斯韦(James Clerk Maxwell)提出了著名的麦克斯韦方程,从而统一了电学和磁学。他是当时世界上最受尊敬的科学家,也是古往今来最伟大的科学家之一。
1701065473
1701065474 1871年,麦克斯韦在《论热能》(Theory of Heat)一书中提出了一个难题,题为“热力学第二定律的局限”。麦克斯韦假设有一个箱子被一块板子隔成两部分,板子上有一个活门,如图3.1所示。活门有一个“小妖”把守,小妖能测量气体分子的速度。对于右边来的分子,如果速度快,他就打开门让其通过,速度慢就关上门不让通过。对于左边来的分子,则速度慢的就让其通过,速度快的就不让通过。一段时间以后,箱子左边分子的速度就会很快,右边则会很慢,这样熵就增加了。
1701065475
1701065476
1701065477
1701065478
1701065479 ▲图3.1 上图:麦克斯韦(1831—1879)(美国物理学会西格尔图像档案)。下图:麦克斯韦妖会在快分子(白色)通往左边时和慢分子(黑色)通往右边时打开门
1701065480
1701065481 根据热力学第二定律,要减少熵就得做功。小妖又做了什么功呢?当然,他开门关门无数次。但是麦克斯韦假设了小妖使用的门既无质量也无摩擦,因此开门关门要不了多少功,可以忽略不计(对这种门提出了可行的设计)。那么小妖还做了其他的功吗?
1701065482
1701065483 麦克斯韦的回答是没有:“热系统(左边)变得更热,  [40]  冷系统(右边)变得更冷,然而却没有做功,只有一个眼光锐利、手脚麻利的智能生物在工作。”
1701065484
1701065485 为什么没做功,熵也减少了呢?这岂不是违反了热力学第二定律?麦克斯韦的小妖难住了19世纪末和20世纪初许多杰出的头脑。麦克斯韦自己的回答是第二定律(熵随时间增加)根本就不是一条定律,而是在大量分子情形下成立的统计效应,在个体分子尺度上并不必然成立。
1701065486
1701065487 但是当时和后来许多物理学家都强烈反对。他们认为第二定律绝对没错,肯定是那个小妖玩了猫腻。既然熵减少了,肯定以某种难以确定的方式做了功,否则不可能。
1701065488
1701065489 很多人都想解决这个悖论,但是直到60年后这个问题才被圆满解决。1929年,突破出现了:杰出的匈牙利物理学家西拉德(Leo Szilard)提出,做功的是小妖的“智能”,更精确地说,是通过测量获取信息的行为。
1701065490
1701065491 西拉德(图3.2)是第一个将熵与信息联系起来的人,这个关联后来成了信息论的基础和复杂系统的关键思想。西拉德写了一篇题为“热力学系统在智能生物的干预下的熵的减少”的著名论文  [41]  ,文中西拉德认为测量过程(小妖要通过测量获取“比特”信息,比如趋近的分子速度是慢是快)需要能量,因此必然会产生一定的熵,数量不少于分子变得有序而减少的熵。这样由箱子、分子和小妖组成的整个系统就仍然遵守热力学第二定律。
1701065492
1701065493
1701065494
1701065495
1701065496 ▲图3.2 西拉德(1898—1964)(美国物理学会西格尔图像档案)
1701065497
[ 上一页 ]  [ :1.701065448e+09 ]  [ 下一页 ]