打字猴:1.701065933e+09
1701065933 复杂 [:1701064748]
1701065934 孟德尔和遗传律
1701065935
1701065936 达尔文的理论没有解释性状如何从父代传给子代,也没有解释自然选择的基础——性状的变异——是如何产生的。直到20世纪40年代才发现DNA是遗传信息的载体。19世纪提出了许多遗传理论,但都没有产生很大影响,直到1900年,孟德尔(Gregor Mendel,图5.3)的工作被“重新发现”。
1701065937
1701065938 孟德尔是奥地利人,他是一位修道士,又是一位对自然有着强烈兴趣的物理教师。孟德尔在了解拉马克的获得性状遗传理论后,用豌豆做了一系列实验,以验证拉马克的理论,时间长达8年。他的结果不仅否定了拉马克的推测,同时也揭示了遗传的一些惊人的本质。
1701065939
1701065940 孟德尔研究了豌豆的几种性状:种子的光滑度和颜色;豆荚的形状;豆荚和花的颜色;花在植株上的位置以及植株的高度。每种性状都有两种不同的表现(例如,豆荚可以是绿色或黄色;植株可以是高或矮)。
1701065941
1701065942
1701065943
1701065944
1701065945 ▲图5.3 孟德尔(1822—1884)(引自国家医药图书馆,National Library of Medicine)(http://wwwils.nlm.nih.gov/visibleproofs/galleries/technologies/dna.html)
1701065946
1701065947 直到现在,孟德尔的发现在遗传学中都被认为大致是正确的。首先,他发现植株的后代并不能遗传父代在生命期中获得的性状。因此拉马克式的遗传是不成立的。
1701065948
1701065949 另外他发现遗传是通过父母提供的离散“因子”产生的,每种性状对应父母提供的一种因子(也就是说,父母提供的一个因子决定了是高株还是矮株)。这里的因子大致对应于我们所说的基因。因此遗传的媒介是离散的,而不是像达尔文等人提出的是连续的(豌豆既可自花授粉也可异花授粉)。
1701065950
1701065951 孟德尔还发现,对于他研究的每一种性状,每一植株都有一对基因与之相对应(简单起见,我使用更为现代的术语,在孟德尔的时代并没有“基因”这个术语)。其中每个基因都对那种性状——例如高和矮——进行编码。这被称为等位基因(allele)。这样对于植株高度,其等位基因的编码就有三种可能:两者一样(高/高或矮/矮)或者不同(高/矮,与矮/高等同)。
1701065952
1701065953 不仅如此,孟德尔还发现,对于每一种性状,等位基因中有一个是显性的(例如高矮性状中高为显性性状),另一个则是隐性的(例如矮为隐性形状)。高/高个体总是表现为高株。高/矮个体也会表现为高株,因为高是显性的;只要有一个显性基因就够了。而只有矮/矮个体——两者都是隐性基因——才会表现为矮株。
1701065954
1701065955 举个例子,假设你用两株高/矮个体进行异花授粉。父母都很高,却还是有四分之一的可能他们的后代会从两者都遗传到矮基因,从而产生出矮/矮个体。
1701065956
1701065957 利用概率和推理,孟德尔能成功预测一代植株中表现出显性性状和隐性性状的植株各有多少。孟德尔的实验推翻了当时盛行的“混合遗传”的观念——认为子代的性状会是父母性状的平均。
1701065958
1701065959 孟德尔的研究是对遗传现象的第一个解释和量化预测,虽然孟德尔不知道他说的“因子”是什么构成的,也不知道它们如何通过交配重组。遗憾的是,1865年他的论文《植物杂交实验》发表在一个相当不著名的期刊上,因而其重要性直到1900年才被承认,后来有几位科学家也通过实验得到了类似的结果。
1701065960
1701065961 复杂 [:1701064749]
1701065962 现代综合
1701065963
1701065964 你可能会认为孟德尔的结果对达尔文主义会是极大的促进,因为它为遗传机制提供了实验验证。但其实在数十年里,孟德尔的思想都被认为是否定了达尔文的思想。达尔文的理论认为进化包括变异都是连续的(也就是说,生物个体之间的差异可以极为细微),而孟德尔的理论则提出变异是离散的(豌豆植株要么高要么矮,不能介于两者之间)。孟德尔理论的许多早期拥护者信奉突变学说(mutation theory)——认为生物变异是由于后代的突变,有可能非常大,并且自身产生进化,而自然选择只是用来保留(或消除)种群中这种突变的次要机制。达尔文及其早期追随者则坚决反对这种思想;达尔文理论的基石就是个体变异必须非常小,正是对这种微小变化的自然选择导致了进化,而且进化是渐进的。对于突变学说,达尔文有一句著名的驳斥,“Natura non facit saltum(自然不会跳跃)”。
1701065965
1701065966 达尔文主义者和孟德尔主义者相互论战了多年,直到20世纪20年代,人们发现,与孟德尔的豌豆的性状不同,生物的大部分性状都是由许多基因一起决定的,每个基因都有数个不同的等位基因,这种争论才烟消云散。多个不同等位基因会有数量极大的组合可能,从而使得生物的变异像是连续的。生物在基因层面的离散变异会导致表型——基因决定的生理特征(例如高矮、肤色等)——看似连续的变异。人们最终认识到,达尔文与孟德尔的理论并不矛盾,而是互补的。
1701065967
1701065968 早期达尔文主义者与孟德尔主义者之所以会水火不容,还有另一个原因,就是虽然双方都有实验证据支撑他们的立场,但当时却还没有成熟的概念体系(例如多个基因控制性状)和数学能将双方的理论融合到一起。要分析在杂交种群中多个基因在自然选择下相互作用的孟德尔式遗传的结果,必须发展出一套全新的数学工具。这套工具到20世纪20—30年代才由数学生物学家费希尔(Ronald Fisher)发展出来。
1701065969
1701065970 费希尔和高尔顿(Francis Galton)一起,创建了现代统计学。他最初是受现实世界中的农业和动物养殖问题的驱使。费希尔的成果,再加上霍尔丹(J.B.S.Haldane)和赖特(Sewall Wright)的工作,证明了达尔文与孟德尔的理论实际上是一致的。不仅如此,费希尔、霍尔丹和赖特还提供了一个数学框架——群体遗传学(population genetics)——用来理解在孟德尔遗传学和自然选择作用下演化种群的等位基因的动力学。达尔文理论和孟德尔遗传学,  [77]  再加上群体遗传学,共同形成了后来所谓的“现代综合(the Modern Synthesis)”。
1701065971
1701065972 费希尔、霍尔丹和赖特被认为是现代综合的奠基者。三人的意见有很多分歧,尤其是费希尔和赖特对自然选择和“随机基因漂移”的相对作用有激烈争议。在随机基因漂移过程中,某种等位基因占优势仅仅是因为随机的结果。例如,假设豌豆的高矮性状对植株整体的适应性没有影响。同时假设在某个时刻,仅仅是由于随机,群体中矮等位基因占的比重超过了高等位基因。如果每株高植株和矮植株产生的后代数量大致相同,则矮等位基因会更有可能在下一代中出现得更频繁,而这仅仅是因为具有矮等位基因的父代植株较多。通常,如果两种性状的选择优势没有差异,则其中一种性状最终会扩散至种群全体。漂移在小种群中的作用更强,因为在大种群中,漂移产生的微小波动会趋于被抹平。
1701065973
1701065974 赖特认为随机基因漂移在进化和新物种的产生中扮演了关键角色,而费希尔则认为漂移顶多是个次要角色。
1701065975
1701065976 双方的观点都有些道理,也很有趣。人们可能会认为,当英国人费希尔和美国人赖特碰面的时候,两人会一边喝啤酒,一边进行热烈而友善的讨论。然而两人富有成效的交流在他们各自发表文章攻击对方后结束了,到1934年,两人的通信基本终止。对于自然选择和随机漂移的相对作用的争论同以前孟德尔主义者与达尔文主义者之间的争议一样具有火药味——这真让人感到讽刺,因为正是费希尔和赖特的工作表明了双方的争议是不必要的。
1701065977
1701065978 现代综合在20世纪30—40年代得到了进一步发展,并形成了此后50年被生物学家普遍接受的一系列进化原则:
1701065979
1701065980 ◆自然选择是进化和适应的主要机制。
1701065981
1701065982 ◆进化是渐进过程,通过自然选择作用和个体非常细微的随机变异产生。这类变异在群体中大量发生,并且不存在偏好(也就是说并不是像拉马克认为的,必然会导致“进步”)。个体变异来源于随机基因突变和重组。
[ 上一页 ]  [ :1.701065933e+09 ]  [ 下一页 ]