打字猴:1.701067511e+09
1701067511 复杂 [:1701064801]
1701067512 总结
1701067513
1701067514 通过程序运行中表现出来的机制,模仿者避开了认知的第22条军规:你无法探索所有可能,但如果你不探索它们,你就无法知道哪种可能值得探索。你必须毫无偏见,但需要探索的领域又太大;你需要利用概率来让探索公平。在模仿者受生物启发的策略中,最初是信息很少,使得温度很高,也很随机,许多探索并行进行。随着获得的信息越来越多,适当的概念被发现,温度降低,探索也变得越来越具有确定性,一系列特定概念开始占据主导。整体上使得系统从极为随机、并行和自底向上的处理模式逐渐转变成确定、连贯而且集中的模式,逐步发现对情形的一致性认知并渐渐让其“凝结”。就像我在第12章阐释的,处理模式的逐步转变似乎是一些复杂适应系统的共性。
1701067515
1701067516 模仿者与生物系统的相似性迫使我们从更广泛的角度来思考和理解我们所建立的系统。例如,人们可能会注意到,细胞因子在免疫系统中传递信号的作用就类似于码片在类比问题中唤起对特定位置的注意,这实际上就是在广义的信息处理层面上认识生物学单位的功能。类似的,如果注意到了免疫系统中的温度现象——发热、炎症——来自于许多自主体的联合行动,人们也许就会受到启发,从而更好地对模仿者这样的系统中的温度机制进行建模。
1701067517
1701067518 最后还有棘手的意义问题。在第12章我曾说过,就传统计算机来说,信息对于计算机本身是没有意义的,只对人类创造者和“最终使用者”才有意义。然而,我还是认为模仿者代表了一种相当不传统的计算模型,对于它所具有的概念和它所做的类比,它能理解一种非常初级的意义。例如,后继组合的概念在网络中与其他类似的概念相联,模仿者能够认识这些概念,并在各种情形中合理地利用这些概念。在我看来,这就是意义的开端。但是就像我在第12章说的,意义与生存和自然选择密不可分,而模仿者还没有涉及这一些,只是在降低温度这一点上与“生存”本能有一点点关联。从这方面来说,模仿者(以及后来由侯世达的研究团队研发的一系列让人印象更加深刻的程序  [187]  )与生物系统还有着很大的区别。
1701067519
1701067520 AI的终极目标是让人摆脱意义的怪圈,并且让计算机本身能理解意义。这是AI中最难的问题。数学家罗塔(Gian-Carlo Rota)称这个问题为“意义屏障”,  [188]  不知道AI是否或何时能“破解”它。我个人认为这不是短时间能做到的,但如果能够破解,我怀疑类比将是关键。
1701067521
1701067522 复杂 [:1701064802]
1701067523 第14章 计算机模型
1701067524
1701067525 复杂系统顾名思义就是很复杂的系统,而物理、化学、数学、生物学这些以数学为导向的学科关注的往往是易于用数学处理的简单而理想化的系统。复杂系统很难单独用数学进行处理,不过现在的计算机速度越来越快,价格也越来越便宜,已经有可能构造复杂系统的计算机模型并进行实验。图灵、冯·诺依曼、维纳(Norbert Wiener)等计算机科学先驱都希望用计算机模拟能发育、思维、学习和进化的系统。一门新的实践科学由此诞生。在理论科学和实验科学之外又产生了一个新的门类:计算机仿真(图14.1)。在这一章,我们来看一看复杂系统的计算机模型能告诉我们什么,用这样的模型来进行研究又会有哪些陷阱。
1701067526
1701067527 复杂 [:1701064803]
1701067528 模型是什么
1701067529
1701067530 在科学中,模型是对某种“实在”现象的简化表示。科学家们说是在研究自然,但实际上他们做的大部分事情都是在对自然进行建模,并对所建立的模型进行研究。
1701067531
1701067532 以牛顿的引力定律为例:两个物体之间的引力正比于它们质量的乘积。这是对一种特定现象的数学描述——也就是数学模型。还有一种模型是用较为简单的概念来描述现象实际是如何运作的,也就是所谓的原理。在牛顿的时代,他的引力定律受到质疑,就是因为他没有解释引力的原理。也就是说,他没有用“大小、形状和运动”等物理对象的属性对其进行解释——根据笛卡儿的思想,这些基本要素是所有物理模型必要而且充分的组成部分  [189]  牛顿自己推测过引力的可能原理,例如,他“猜想地球就像海绵一样,  [190]  不断吸收天空降落下来的轻质流体,这种流体作用到地球上的物体上,导致它们下降”。这种概念框架可以称为原理模型。200年后,爱因斯坦提出了一种不同的引力原理模型——广义相对论,在其中引力被概念化为四维时空的几何特性。现在,一些物理学家又在鼓吹弦论,提出引力是由细小、振动的弦导致的。
1701067533
1701067534
1701067535
1701067536
1701067537 ▲图14.1 在理论科学和实验科学的传统划分之外又产生了一个新的门类:计算机仿真(David Moser绘制)
1701067538
1701067539 模型是我们思维的方式,是用我们熟悉的概念解释观察到的现象,所用到的概念是我们的头脑能够理解的(就弦论来说,则是少数非常聪明的人能够理解的)。模型也是预测未来的途径:比如说,牛顿的引力定律仍然被用来预测行星轨道,而爱因斯坦的广义相对论则成功预测了那些所预测的轨道的偏差。
1701067540
1701067541 复杂 [:1701064804]
1701067542 理想模型
1701067543
1701067544 在天气预报、汽车和飞机设计、军事运筹中,经常用计算机来运行详尽而复杂的模型,对所建模的特定现象进行详细的预测。
1701067545
1701067546 而在复杂系统研究中一个主要的方向就是研究理想模型:通过相对简单的模型来理解一般性的概念,而不用对具体系统进行详细的预测。下面是我在书中曾讨论过的一些理想模型的例子:
1701067547
1701067548 ◆麦克斯韦妖:用来研究熵的概念的理想模型。
1701067549
1701067550 ◆图灵机:用来对“明确程序”进行形式化定义以及研究计算概念的理想模型。
1701067551
1701067552 ◆逻辑斯蒂模型和逻辑斯蒂映射:用来预测种群数量的极简模型;后来成为研究动力学和混沌一般性概念的理想模型。
1701067553
1701067554 ◆冯·诺依曼自复制自动机:用来研究自复制“逻辑”的理想模型。
1701067555
1701067556 ◆遗传算法:用来研究适应性概念的理想模型。有时候也作为达尔文进化的极简模型。
1701067557
1701067558 ◆元胞自动机:用于研究一般性的复杂系统的理想模型。
1701067559
1701067560 ◆科赫曲线:用来研究海岸线、雪花等分形结构的理想模型。
[ 上一页 ]  [ :1.701067511e+09 ]  [ 下一页 ]