1703865178
区块链技术驱动金融:数字货币与智能合约技术 2.5 总结
1703865179
1703865180
挖矿成本
1703865181
1703865182
我们现在来看一下挖矿经济学。前文提到过,作为矿工挖矿是十分昂贵的。按现在的难度,找到下一个单独的区块需要计算1020个哈希值,区块奖励约是25个比特币,按照现在的比特币汇率,是不小的一笔钱。这些数据可以让我们简单地计算出挖矿是否赚钱。我们可以用这个简单的逻辑来做这个决定:
1703865183
1703865184
如果:
1703865185
1703865186
挖矿奖励>挖矿成本
1703865187
1703865188
那么:
1703865189
1703865190
矿工赚钱
1703865191
1703865192
条件是:
1703865193
1703865194
挖矿奖励=区块奖励+ 交易费
1703865195
1703865196
挖矿成本=硬件成本+ 运营成本(电费、空调费等)
1703865197
1703865198
基本上,矿工的挖矿奖励就是区块奖励和交易费。矿工自己与总的支出相比较,包括硬件和电费成本。
1703865199
1703865200
但这个简单的公式也有几个复杂的地方:第一,硬件投资是固定的,但电费是个变量,随时间变化。第二个复杂之处是,矿工得到的奖励取决于他们发现区块的速度,这不仅取决于他们硬件的能力,还取决于他们的计算能力占全球计算能力的比例。第三是挖矿产生的成本通常是用美元和其他传统货币表示的,但他们得到的奖励是比特币。所以这个方程在任何时候都有一个隐藏的因素,就是比特币的汇率。第四,到目前为止,我们都假设矿工会诚实地遵守协议。但矿工有可能选择用一些其他的挖矿策略,而不总是试图延展最长的有效分支。所以这个方程没有囊括所有矿工可以用到的不同策略的细微差别。事实上,要想分析挖矿是否有意义,是一个博弈论问题,没有那么容易找到答案。
1703865201
1703865202
到此为止,我们已经较好地理解了比特币如何实现去中心化。我们现在总结一些关键点,放在一起以便更好地理解。
1703865203
1703865204
我们首先从身份开始。根据我们知道的,比特币协议不需要真实世界的身份就可以参与。任何用户任何时刻都可以制造一对匿名的钥匙。如果爱丽丝想付给鲍勃比特币,比特币协议里没有详细说明爱丽丝如何得知鲍勃的地址。在这些匿名的钥匙对用作身份的情况下,交易其实是向整个点对点网络广播的信息,把比特币从一个地址转到另一个地址。比特币只是交易输出,我们在下一章节会深入讨论这个问题。
1703865205
1703865206
1703865207
不存在所谓“1比特币”这样的东西
1703865208
1703865209
比特币没有固定面额,不像美元。具体来说,没有“1比特币”这样的特别名称。比特币只不过是交易输出,在现在的规则里,它们可以是精确到小数点后8位的任意值。可能的最小价值是0.000 000 01 BTC(比特币),我们称之为1个中本聪(比特币的发明人)。
1703865210
1703865211
比特币点对点网络的目标,是把所有新的交易与新的区块传播到所有比特币节点。但这个网络很不完美,只能尽其所能来传递信息。这个系统的安全性不是来自点对点网络的完美,而是来自我们本章中重点讨论的区块链和共识协议。
1703865212
1703865213
当我们说一个交易被放进了区块链,我们真实的意思是这笔交易已被确认了许多次。对于多少次确认足以让我们确信交易已包含在内,并没有一个固定的数字,但6次是个常用的数目。一笔交易收到的确认越多,你就越可以确信这笔交易被放进了区块链。经常会有一些孤块,或者没有进入共识链的区块。有很多原因可以导致一个区块变为孤块。这个区块可能包含一个不正当交易,或者试图双重支付。也有可能是网络延迟,这里指的是,两个矿工可能相隔几秒找到了新的区块,这两块几乎同时被广播到网上,那其中一块肯定会被丢弃。
1703865214
1703865215
最后我们看了哈希谜题与挖矿。矿工是决定参与创造新区块竞争的特殊类型节点。如果其他矿工继续在他们的区块上搭建的话,对于他们努力的回报是新造的比特币(新区块奖励)和已经存在的比特币(交易费)。很微妙也很重要的一点是:假设爱丽丝比鲍勃的计算能力要强大100倍,但这并不意味着爱丽丝一定能够赢得找到下一区块的竞赛,而是爱丽丝和鲍勃发现新区块的概率比率是100∶1。长期下来,鲍勃找到的区块数量是爱丽丝的1/100。
1703865216
1703865217
我们预计矿工们会处在经济平衡点附近,意味着他们得到的奖励大致等于他们在硬件与电费上的花费。理由是如果一个矿工持续亏钱,他会停止挖矿。反之,如果硬件和电费固定的情况下,挖矿利润很高,那更多的挖矿设备会加入网络。计算能力的增加会导致难度提高,每个矿工预期的回报便会降低。
1703865218
1703865219
比特币深度使用了分布式共识的概念。在传统货币系统中,共识的作用是有限的。具体来说,有一个共识过程来决定货币的汇率。这在比特币里当然也是对的——我们需要围绕比特币价值的共识。但在比特币里,我们还需要对账本情况的共识,这是由区块链来完成的。换句话说,甚至你拥有多少比特币的算法都是依赖共识的。当我们说爱丽丝拥有一定数量的比特币,我们真实的意思是说在比特币点对点网络,在区块链中记录的所有爱丽丝地址上拥有的比特币数量总额。这是比特币系统的一个终极真相:拥有比特币就是其他节点对给定的一方拥有这些比特币的共识。
1703865220
1703865221
最后,我们必须对整个系统的规则达成共识,系统规则有时不得不改变。比特币规则改变有两种:对应为软分叉与硬分叉。我们把关于它们区别的详细讨论放到第3章和第7章中。
1703865222
1703865223
启动加密货币
1703865224
1703865225
另一个微妙的概念是“自举过程”(bootstrapping)。比特币系统里三个不同的想法——区块链的安全性、挖矿生态系统的健康程度,以及货币的价值在相互作用。我们显然希望区块链安全,这样比特币才能成为一种可行的货币。想要区块链安全,就要保证黑客不能倾覆共识过程。这反过来意味着,一个黑客不能够制造一大堆挖矿节点来占据50%以上的新区块生成。
1703865226
[
上一页 ]
[ :1.703865177e+09 ]
[
下一页 ]