打字猴:1.704828456e+09
1704828456 未来50年 [:1704828065]
1704828457 儿童会告诉科学家什么
1704828458
1704828459 A·戈普尼克
1704828460
1704828461 1997年,在国家航空航天局(NASA)工作的空间科学家们发现了怎样通过分析从火星岩石反射的光线来确定火星是否存在过水。水会在岩石上留下碳的痕迹,这将影响岩石反射的光谱。科学家可以反过来从光的数据寻找碳,然后根据碳来确定水的存在。那年,在几千米以外的伯克利幼儿园,一个名叫克温(Kevin)的4岁小男孩儿也同样兴奋地发现了一台新机器是如何运转的。在机器上放一定组合的积木块儿(不能是别的东西),它就能奏响音乐。小克温根据这个事实反过来推测哪些木块儿能让机器响起来,然后他用这个发现来让它奏出音乐。在未来50年,我们将逐渐懂得克温和NASA的火箭专家们如何能够做出这些惊人的发现。问题的答案还将使我们换一种方式去思索科学、儿童、大脑,也许还有基因。
1704828462
1704828463 人类对周围的世界有许多了解。我们知道岩石、波浪、烤炉;知道兔子、棕榈树、牵牛花;知道父母、孩子、正牙医生——还有数不清说不完的人物、动物和植物。我们的知识大体说来是很准确的:我们能很好地预言烤炉、牵牛花和牙医的活动。当我们每天摁下“烘烤”摁钮,在花园添加“神奇生长灵”,28或者预约病人的时候,都在运用这些预言。出生的时候我们什么都不懂,但不管怎么说,我们还是学会了。
1704828464
1704828465 我们也学日常生活以外的事物——如火星岩石、病毒和神经元。这些知识同样是非常准确的——足以让我们控制或至少减缓如天花和抑郁症等古老的疾病,更不用说秃顶、阳痿和偏头痛。
1704828466
1704828467 但我们怎么能懂那么多呢?毕竟,我们直接从世界得到的信息不过是打在我们视网膜上的一个个无穷小的光子和在我们耳膜振动的无规则的气流。从那样一点有限的而且显然毫不相干的信息,怎么可能得到真理呢?“真理”说起来像一个堂皇的形而上学的概念,其实我们都知道很多日常生活中的真理:热烤熟了面包,水滋润了花朵,病人失约惹恼了正牙医生。从心理学的观点看,这样的一些知识与理论物理学或天文学的知识是同样令人惊奇和疑惑的。一种类型的物理客体,如顶着颗头颅的一个皮囊,与另外类型的物理客体,如烤炉、牵牛花和正牙医生,两者之间的系列相互作用,如何能让一个去学会认识另一个呢?
1704828468
1704828469 近50年的发展心理学使这个问题变得更加疑惑。因为有了新技术,我们能比从前更多了解儿童的思维。看来,婴幼儿知道的和学习的都超出了我们从前的想象。到了三四岁的时候,他们已经大概知道了世界是怎么回事。一个小孩子,不会读,也不会写,连话都说不清楚,怎么能那么快地学会那么多的东西呢?这是学习的理论需要解释的问题。我们的学习能力不能仅仅归功于教育、训练或者什么专门的社会机构,它似乎还是我们人类本性的一个基本组成部分。
1704828470
1704828471 在过去的50年里,认知科学告诉了我们很多东西:我们关于世界的知识是什么样的?我们如何应用那些知识?那些知识是如何印入我们大脑的?发展认知科学还告诉我们知识如何随我们年龄的增长而改变。但我们还是不知道那些知识从哪里来,又如何能给我们带来我们外在世界的真实图景。学习的问题,与意识和浪漫的爱的问题一样,已经写进了认知科学教科书里“未解之谜”的一章。关于意识问题,我不相信我们能在50年里得到更多的认识,浪漫的爱就更难说了。不过,我想我们能实在地接近一个关于学习的科学解释。
1704828472
1704828473 我们能在另一个迥然不同的认知科学的领域找到那种解释的模型:人类的视觉。视觉问题是这样的:获取进入眼睛的光的模式,然后把那种信息转化为在空间运动的物体的精确表示。我们是如何解决这个问题的呢?进入眼睛的光如何与空间事物发生联系,人们似乎隐约做过一般的假设。例如,我们似乎不自觉地假定进入视网膜的光是三维世界的二维投影,我们就用这样的假设来解决视觉问题。我们从不认为我们生活在平直的世界,尽管那在逻辑上是可能的。实际上,婴儿似乎生来就相信那一点,例如,小宝宝在看见东西向他们逼近的时候,总会向后退缩。
1704828474
1704828475 不过真正有趣的还不在于我们认识了视觉的这件事,而在于通过假定那样的事实,我们就能发现许多意想不到的新的事实。我们不自觉地假定,视网膜的图像是三维物体的二维投影。根据这个一般的认识,我可以猜测现在我视网膜上的那个特殊图像,一定来自一根细棍联结的两个圆盘,它正以一个特别奇怪的角度躺在地板上。知道了这个事实,我可以解决我在现实中遇到的麻烦:没完没了地到处寻找我读书用的眼镜。
1704828476
1704828477 当然,这样的假定有时也会把我们引入歧途——特别是当某个邪恶的心理学家在制造幻觉的时候。不过,这些假定往往都是正确的,能让我们正确认识外在的世界是什么样子。
1704828478
1704828479 但是大脑怎么能做出假定呢?当大脑(或其他计算机器)接收一定输入时,我谈的那些假定会转化为对输出结果的约束。当我的视网膜以特别方式“亮”起来时,只有某些神经元(而不是所有的)能接着亮下去。神经科学家在动物注视一样东西的时候,可以记录它的视觉皮层上某些特殊细胞的输出结果,然后构造出一个网络图像。神经学研究说明了那些约束是如何发生作用的,那些计算又是如何在大脑中实现的。
1704828480
1704828481 在视觉科学中,不同的学科令人惊讶地走到一起来了。心理学家告诉我们从什么样的视觉信息形成什么样的物体表象;告诉我们什么模式的光打在视网膜上会产生什么样的感觉——问题就这样确定下来。然后,数学家告诉我们如何才能通过确定关于物体与光联系的非常一般的假定来解决那个问题。计算机科学家告诉我们那些解如何作为实际的物理机器运行的约束而实现。而神经科学家告诉我们那些解又如何在我们头盖骨下的那个特殊机器里实现。
1704828482
1704828483 同样的路线也有助于认识我们是怎样学习的:那就是,确定儿童和成人解决的问题,在一定假设下用数学得出那些问题的可能解,看那些解如何在计算机里实现,然后看它们最终如何在我们的大脑中实现。最近,来自不同学科的——科学哲学、人工智能、统计学和发展心理学——关于学习的新思想,也同样地走到一起来了。在未来50年里,这个认识的融合将产生一个羽翼丰满的关于我们学习的科学理论。
1704828484
1704828485 我们就从这个问题说起——它至少是出发点的问题之一。我们如何认识世界的因果结构——事物如何运动,一个事件如何引发其他的事件?在任何科学实践中,这当然是一个重要问题,而对幼小的儿童来说,它也是重要的。发展心理学已经证明,儿童懂得许多有关因果关系的事情。到三四岁的时候,他们就跟大人一样知道了烤炉、牵牛花和人。五岁的孩子比三岁的知道得多,而七岁的孩子知道更多。儿童跟科学家一样,似乎很容易学会新的因果事实。
1704828486
1704828487 不过,因果知识也代表了我们的经历与我们的学问之间的一道深广的鸿沟。哲学家休谟(David Hume)最早阐发了这个问题。我们所看到的不过是事件之间的可能事件。一类事件可能总是伴随着另一类事件发生,但我们怎么知道一个引发另一个呢?在现实生活中,因果关系很少是只涉及两个事件的;可能有几十个事件以复杂的方式因果地联系在一起。在现实生活中,一个事件实际上通常不会总跟着另一个事件;而且我们也并不总是知道两个事件中的哪一个先发生。这样的不确定性和复杂性使我们日常的因果问题显得更加复杂。是烤炉电阻丝的烟烤熟了面包片,还是灼热的面包屑使烤炉的电阻丝冒烟?或者,我们把温度调得太高了,它在烤熟面包片的同时也使电阻丝冒烟?我们能看到的只是同时出现的一片混乱。
1704828488
1704828489 有什么办法来清理那一堆混乱吗?直观地说,我们可以做两件事情。我们可以做一系列实验:例如,我们把温度旋钮定在一个很高的温度,但烤炉里没有面包;或者,我们把灼热的面包屑洒在电阻丝上,但让温度保持在很低的状态。假如做不了实验,我们可以仔细去观察,确定电阻丝在什么时候冒烟,什么时候不冒烟。也许,不管有没有灼热的面包屑,它只在高温下才冒烟?或者,不管温度多高,它只在有灼热的面包屑时才冒烟?
1704828490
1704828491 当我们做这些实验或者观察的时候,我们也在假定系列之间的可能事件的发生模式是如何与它们之间的因果关系相联系的——正如我们假定二维视网膜图像如何与三维物体相联系。我们从没想过我们生活在平直的世界,同样,我们也没想过生活在没有原因的世界。当然,同视觉的情形一样,休谟的魔鬼也可能以某种方式安排那些可能事件来欺骗我们。但是,我们的进步却是因为我们不相信有那样的魔鬼——用爱因斯坦的话说,上帝虽然狡猾,却不邪恶。29
1704828492
1704828493 卡内基-梅隆(Carnegie-Mellon)大学格里默(Clark Gly-mour)领导的一群科学哲学家与加州大学洛杉矶分校(UCLA)的计算机科学家皮尔(Judea Pearl)和他的同事们,开始创立一种数学形式来帮助我们跳出直觉,以严格的方式表述那些假定。我们可以借助所谓的定向无圈图(通常也叫贝叶斯网络图)来思考因果关系。30这些图告诉我们一个变量(如面包的状态)如何影响另一个变量(如热电阻丝的状态)。无圈图背后的基本假定是,如果一个事件引发另一个事件,那么当那个变量的数值改变时,另一个变量的数值也可能发生改变。如果面包屑导致电阻丝发烟,那么烤炉里面包屑的存在应该更可能引起冒烟。我们可以用连接变量的箭头来表示这些因果关系。贝叶斯网络图假定了一些简单而普遍的因果关系模式(也就是箭头的模式)是如何与变量间的可能事件的模式相联系的。在温度旋钮、灼热的面包和冒烟的电阻丝之间,我们能画出三种不同的图像,相应于我们说过的三种因果假设:
1704828494
1704828495 A.温度旋钮>灼热的面包>冒烟的电阻丝
1704828496
1704828497 温度旋钮使面包发热,灼热的面包使电阻丝冒烟。
1704828498
1704828499 B.温度旋钮>冒烟的电阻丝>灼热的面包
1704828500
1704828501 温度旋钮使电阻丝冒烟,冒烟的电阻丝使面包发热。
1704828502
1704828503 C.冒烟的电阻丝<温度旋钮>灼热的面包
1704828504
1704828505 温度旋钮分别使电阻丝冒烟,使面包发热。
[ 上一页 ]  [ :1.704828456e+09 ]  [ 下一页 ]