1705412266
直减率
1705412267
1705412268
可以想象,当我们垂直离开地面向着太阳运动时,温度就会升高。但是对流层里并非如此。地球吸收热量并且将其逆向辐射出去。因此,温度通常在地面最高,随着高度增加而降低。请注意图4.9,温度直减率(lapse rate,温度在对流层里随着高度而变化的速率)大约平均每1000米为6.4℃。例如,丹佛与派克斯峰(Pikes Peak)之间的高差大约是2700米,通常产生17℃的温差。在9100米高度飞行的喷气式飞机所穿行的大气的温度大约比地面低56℃。
1705412269
1705412270
1705412271
1705412272
1705412273
图 4.9 典型条件下的温度直减率。对流层顶是对流层和平流层之间的过渡带。它标志着温度不再随高度而下降。
1705412274
1705412275
然而,正常的直减率并非一成不变。急剧的逆辐射有时能使地球表面以上的温度高于地面本身的温度。这种特殊状况——高度较低处的空气比高空的空气凉爽——称为逆温(temperature inversion)。逆温现象很重要,因为它影响空气的运动。地面上通常向上升的暖空气,可能被逆温层更暖的空气所阻隔(图4.10),地面的空气因此被封盖。如果空气中充满了汽车尾气或烟尘,就会发展成严重的烟雾(见“多诺拉悲剧”专栏)。洛杉矶由于被群山环抱,常常出现逆温现象,导致阳光变暗形成阴霾(图4.11)。
1705412276
1705412277
1705412278
1705412279
1705412280
图 4.10 逆温。(a)温暖、下沉的空气层形成盖层,在接近地面处暂时封盖了较冷的空气。(b)注意温度随着距离地面的高度升高而降低,直至温暖的逆温层,在逆温层温度上升。
1705412281
1705412282
1705412283
1705412284
1705412285
图 4.11 洛杉矶地区的烟雾。在逆温层以下,停滞的空气充满了逐渐增多的主要由汽车尾气产生的污染物。另见图12.14。
1705412286
1705412287
空气运动对温度的影响将在随后的“气压与风”一节中详加阐释。
1705412288
1705412289
专栏 4-1 多诺拉悲剧
1705412290
1705412291
1948年10月下旬,一场浓雾降落在宾夕法尼亚州的山谷城镇多诺拉(Donora)。充满水分的空气因被四周的群山及逆温现象所封盖,而停滞在山谷中。逆温使地面与上部较轻而暖的空气盖层之间隔着较冷的空气,该区域逐渐充满了来自城镇中锌厂的烟气和废气。5天之内,烟雾浓度不断增加;从锌厂排放出的二氧化硫,经过与空气接触,不断地转变成致命的三氧化硫。
1705412292
1705412293
不论老年人或是青年人,不论有无呼吸病史的人,都向大夫和医院报告感到呼吸困难和难以忍受的胸部疼痛。在烟雾产生将近一周以后,雨水将空气冲洗干净以前,有20人死亡,数百人住院。一次通常无害的、水分饱和的逆温,由于自然的天气过程与人类活动悲剧性的结合,转变成致命的毒害。
1705412294
1705412296
4.2 气压与风
1705412297
1705412298
关于天气与气候的第二个基本问题是气压(air pressure)。各地气压的差异是如何影响天气状况的?回答这个问题之前首先需要解释为什么气压会产生差别。
1705412299
1705412300
空气是一种气态物质,它的重量影响着气压。如果能在地球表面切取16.39立方厘米的空气并连同其上方所有空气一起称重,那么在海平面标准状况下,其总重量应该大约为6.67千克。实际上,如果你想到该空气柱的尺度,就不会觉得它很重——2.54厘米×2.54厘米×9.7千米,或大约6.2立方米。然而,距地面4.8千米以上的空气重量远小于6.67千克,因为这里的空气相对较少。所以,很显然,在越接近地球表面处,空气就越重,而气压也越高。
1705412301
1705412302
这是一条自然规律,即对于同样体积的冷空气和热空气来说,冷空气比较稠密。这条规律的例证就是充填了较轻气体的热气球能够升空。寒冷早晨以空气相对较重为特征。但是到了下午,温度上升,空气就变得较轻。
1705412303
1705412304
各种类型的气压计可用来记录气压的变化。以毫米汞柱② 或毫巴表示的气压读数,连同所记录的温度,都是每一份气象记录的标准组成部分。某一给定地点的气压随着地面变热或变冷而变化。气压计记录着空气变热而发生的气压下降和空气变凉而发生的气压上升。
1705412305
1705412306
为了使空气运动对天气的影响可视化,可以将空气设想为两种密度不同的液体(分别代表轻空气和重空气),例如汽油和水。如果将液体同时放入一个容器中,较轻的液体将移动到上方而较重的液体移动到下方,请以此来想象空气的垂直运动。较重的液体水平地沿着容器底部扩散,在各处形成同样的厚度。这种流动就代表着空气或风在地球表面的水平运动。空气力图使由于变热和变冷过程所产生的不平衡气压达到平衡状态。空气从重(冷)空气位置向轻(暖)空气位置运动。因此,两个地方之间的气压差异越大,风就越大。
1705412307
1705412309
气压梯度力
1705412310
1705412311
由于地球表面自然环境——水、积雪、深绿色的森林、城市等,以及影响能量吸收和保持的其他因素的差异,逐渐形成了高、低气压带。有时,这些高、低气压带覆盖了整个大陆。但是,它们通常要小得多——宽数百千米,这类地区内部,短距离内会有微小的差异。当气压差发生在两个区域之间,气压梯度力(pressure gradient force)就使空气从高压区域吹向低压区域。
1705412312
1705412313
为了平衡已形成的气压差,空气要从较重的高压区域流向低压区域。较重的空气停留在近地表处,当它移动时就产生了风,并迫使暖空气向上运动。风速同气压差成正比。由气压差引起的风导致气流从高压带流到低压带。如果高、低气压带之间的距离较短,气压梯度就急剧升降,风速就大。当不同的气压带彼此相距较远时,压差不大,空气的运动就比较和缓。
1705412314
[
上一页 ]
[ :1.705412265e+09 ]
[
下一页 ]