1700003022
1700003023
图8: Complex I of the respiratory chain. Reproduced with permissions from: (A) Sazanov LA, Hinchliffe P. Structure of the hydrophilic domain of respiratory complex I from Thermus thermophiles. Science 311: 1430–1436 (2006). (B) Baradaran R, Berrisford JM, Minhas GS, Sazanov LA. Crystal structure of the entire respiratory complex I. Nature 494: 443–48 (2013). (C). Vinothkumar KR, Zhu J, Hirst J. Architecture of mammalian respiratory complex I. Nature 515: 80–84 (2014).
1700003024
1700003025
图9: How mitochondria work. Photomicrograph reproduced with permission from: Fawcett D. The Cell. WB Saunders, Philadelphia (1981).
1700003026
1700003027
图10: Structure of the ATP synthase. Reproduced with permission from: David S Goodsell. The Machinery of Life. Springer, New York (2009).
1700003028
1700003029
图11: Iron-sulphur minerals and iron-sulphur clusters. Modified with permission from: Russell MJ, Martin W. The rocky roots of the acetyl CoA pathway. Trends in Biochemical Sciences29: 358063 (2004).
1700003030
1700003031
图12: Deep-sea hydrothermal vents. Photographs reproduced with permission from Deborah S Kelley and the Oceanography Society; from Oceanography18 September 2005.
1700003032
1700003033
图13: Extreme concentration of organics by thermophoresis. Reproduced with permission from: (a-c) Baaske P, Weinert FM, Duhr S, et al. Extreme accumulation of nucleotides in simulated hydrothermal pore systems. Proceedings National Academy Sciences USA104: 9346–9351 (2007). (d) Herschy B, Whicher A, Camprubi E, Watson C, Dartnell L, Ward J, Evans JRG, Lane N. An origin-of-life reactor to simulate alkaline hydrothermal vents. Journal of Molecular Evolution79: 213–27 (2014).
1700003034
1700003035
图14: How to make organics from H2 and CO2. Reproduced with permission from: Herschy B, Whicher A, Camprubi E, Watson C, Dartnell L, Ward J, Evans JRG, Lane N. An origin-of-life reactor to simulate alkaline hydrothermal vents. Journal of Molecular Evolution79: 213–27 (2014).
1700003036
1700003037
图15: The famous but misleading three-domains tree of life. Modified with permission from: Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings National Academy Sciences USA87: 4576–4579 (1990).
1700003038
1700003039
图16: The ‘amazing disappearing tree’. Reproduced with permission from: Sousa FL, Thiergart T, Landan G, Nelson-Sathi S, Pereira IAC, Allen JF, Lane N, Martin WF. Early bioenergetic evolution. Philosophical Transactions Royal Society B368: 20130088 (2013).
1700003040
1700003041
图17: A cell powered by a natural proton gradient. Modified with permission from: Sojo V, Pom-iankowski A, Lane N. A bioenergetic basis for membrane divergence in archaea and bacteria. PLOS Biology12(8): e1001926 (2014).
1700003042
1700003043
图18: Generating power by making methane.
1700003044
1700003045
图19: The origin of bacteria and archaea. Modified with permission from: Sojo V, Pomian-kowski A, Lane N. A bioenergetic basis for membrane divergence in archaea and bacteria. PLOS Biology12(8): e1001926 (2014).
1700003046
1700003047
图20: Possible evolution of active pumping.
1700003048
1700003049
图21: The remarkable chimerism of eukaryotes. Reproduced with permission from: Thiergart T, Landan G, Schrenk M, Dagan T, Martin WF. An evolutionary network of genes present in the eukaryote common ancestor polls genomes on eukaryotic and mitochondrial origin. Genome Biology and Evolution4: 466–485 (2012).
1700003050
1700003051
图22: Two, not three, primary domains of life. Reproduced with permission from: Williams TA, Foster PG, Cox CJ, Embley TM. An archaeal origin of eukaryotes supports only two primary domains of life. Nature504: 231–236 (2013).
1700003052
1700003053
图23: Giant bacteria with ‘extreme polyploidy’. (A) and (B) reproduced with permission from Esther Angert, Cornell University; (C) and (D) by courtesy of Heide Schulz-Vogt, Leibnitz Institute for Baltic Sea Research, Rostock. In: Lane N, Martin W. The energetics of genome complexity. Nature467: 929–934 (2010); and Schulz HN. The genus Thiomargarita. Prokaryotes6: 1156–1163 (2006).
1700003054
1700003055
图24: Energy per gene in bacteria and eukaryotes. Original data from Lane N, Martin W. The energetics of genome complexity. Nature467: 929–934 (2010); modified in Lane N. Bioenergetic constraints on the evolution of complex life. Cold SpringHarbor Perspectives in Biology doi: 10.1101/cshperspect.a015982 CSHP (2014).
1700003056
1700003057
图25: Bacteria living within other bacteria. Reproduced with permission from: (Top) Wujek DE. Intracellular bacteria in the blue-green-alga Pleurocapsa minor. Transactions of the American Microscopical Society98: 143–145 (1979). (Bottom) Gatehouse LN, Sutherland P, Forgie SA, Kaji R, Christellera JT. Molecular and histological characterization of primary (beta-proteobacteria) and secondary (gamma-proteobacteria) endosymbionts of three mealybug species. Applied Environmental Microbiology78: 1187 (2012).
1700003058
1700003059
图26: Nuclear pores. Reproduced with permission from: Fawcett D. The Cell. WB Saunders, Philadelphia (1981).
1700003060
1700003061
图27: Mobile self-splicing introns and the spliceosome. Modified with permission from: Alberts B, Bray D, Lewis J, et al. Molecular Biology of the Cell. 4th edition. Garland Science, New York (2002).
1700003062
1700003063
图28: Sex and recombination in eukaryotes.
1700003064
1700003065
图29: The ‘leakage’ of fitness benefits in mitochondrial inheritance. Reproduced with permission from: Hadjivasiliou Z, Lane N, Seymour R, Pomiankowski A. Dynamics of mitochondrial inheritance in the evolution of binary mating types and two sexes. Proceedings Royal Society B280: 20131920 (2013).
1700003066
1700003067
图30: Random segregation increases variance between cells.
1700003068
1700003069
图31: The mosaic respiratory chain. Reproduced with permission from: Schindeldecker M, Stark M, Behl C, Moosmann B. Differential cysteine depletion in respiratory chain complexes enables the distinction of longevity from aerobicity. Mechanisms of Ageing and Development132: 171–197 (2011).
1700003070
1700003071
图32: Mitochondria in cell death.
[
上一页 ]
[ :1.700003022e+09 ]
[
下一页 ]