打字猴:1.70024403e+09
1700244030
1700244031 当其他物种似乎对它们天然的并行机器满意的时候,为什么人类需要一台串行虚拟机这个问题还没有明显的答案。也许对于人类需要去做的一些更复杂任务有一些更基本的顺序在其中,或者丹尼特错误地将我们特殊化了。他进一步相信串行程序的发展已经成为一大文化现象。同样,这对我来说也不是那么显而易见。但我需要加一句的是,在我动笔之时,丹尼特的论文还尚未发表,我的评论只是基于他在伦敦1988年雅各布森演讲(Jacobsen Lecture)中阐述的信息。我建议读者们在他的论文发表后直接与丹尼特探讨,而非仅仅基于我这不完整的、主观的,可能甚至是润色过的评论。
1700244032
1700244033 哲学家尼古拉斯·汉弗莱也曾提出过一套诱人的假说来说明模拟能力的进化是如何导致意识产生的。在他的《内部的眼睛》(The Inner Eye )一书中,汉弗莱举出了一个很有说服力的例子来说明像我们或黑猩猩这样的高等社会性动物都必须变成专业的心理学家。大脑必须处理和模拟世界的很多方面,但是世界的大多数方面与大脑自身相比是如此简单。一个社会性动物生活在一个包含有其他动物的世界,这个世界里有潜在的伴侣、对手、伙伴与敌人。为了能在这样一个世界里存活并取得成功,你必须变得能很好地预测其他个体下一步要做些什么。与在一个社会性的世界里预测下一步要发生些什么相比,要知道一个没有生命的世界下一步要发生什么简直是小菜一碟。那些大学里的心理学家,运用着科学的方法,尚且不能很好地预测人类的行为,社会伙伴们却往往能通过面部肌肉的微小动作及其他一些微妙的线索,令人惊讶地擅长于读心以及猜测行为。汉弗莱相信这种“自然的心理学”技巧在社会性动物中得到了很好的进化,几乎相当于一个额外的眼睛或者另外一个负责分析的器官。这个“内部的眼睛”就是进化过的社会心理学器官,就像外部眼睛是一个视觉器官一样。
1700244034
1700244035 到此为止,我觉得汉弗莱的理由还是令人信服的。他接下来主张内部的眼睛是靠自我审视来工作的。每一个动物都审视它自己的感受和情感,借此去理解其他动物的感觉和情感。这个心理学器官依靠自我审视来工作。我不是很确定我是否同意这个观点能够帮助我们理解意识,但汉弗莱确实是一个睿智的作者,他的书很有说服力。
1700244036
1700244037 *18 第67页:一个操纵利他行为的基因……
1700244038
1700244039 人们有时会为“导致”利他行为或其他一些表面看来很复杂的行为的基因感到不安。他们(错误地)认为在某种意义上行为的复杂度是编码在基因里的。其他基因都是编码蛋白质,怎么会有一个单独的基因来导致利他行为呢?但实际上所谓的基因“导致”了什么只是意味着如果这个基因发生一个变化,那么那东西会跟着产生一个变化。单个遗传性的变化,也就是细胞里遗传分子的某些细节的变化,就会导致原本就很复杂的胚胎发育过程产生变化,因而导致行为的变化。
1700244040
1700244041 例如,一个“导致”鸟类兄弟般利他主义的基因突变,一定不是单独地肩负起了一个全新的复杂行为模式的责任。相反,该突变会调节一些已经存在的,而且肯定很复杂的行为模式。这里最有可能的先驱者是家长行为。鸟类通常都会有复杂的神经装置来满足它们喂养和照看它们自己后代的需要。这实际上也是来自它们的祖先,然后经过了很多世代的缓慢的、一步一步的进化。(顺带说一句,对于操纵兄弟关爱的基因心存疑惑者总是前后矛盾的,他们为什么不对同样复杂的关于操纵家长关爱的基因产生怀疑呢?)这个之前就存在的行为模式——本例中的家长关爱——是受一个简单的经验法则调控的,例如“喂养巢里一切张着小嘴喳喳叫的东西”。那么负责“喂养弟弟妹妹”的基因则可以通过加速该经验法则的发育成熟时间来实现。一只携带有兄弟关爱基因突变的幼鸟仅仅是比正常鸟类提前激活其“家长”经验法则。它会把父母巢里的张口喳喳叫的东西——实际是它的弟弟妹妹——当作它自己巢里张口喳喳叫的它自己的孩子。远比不上发明一个崭新的复杂行为,“兄弟行为”可以通过在此前已经存在的行为的发育时间上进行一点小小的变化产生。和通常一样,谬误往往发生于我们对遗传的渐进性的遗忘。事实上适应性进化是通过小的、一步一步的对已经存在的结构或行为的改变产生的。
1700244042
1700244043 *19 第67页:卫生品系的蜜蜂
1700244044
1700244045 如果这本书的初版就有脚注,那么肯定会有一个脚注来解释那些关于蜜蜂的结论并不是那么完美,就像罗森布勒自己小心翼翼得出的一样。按照该理论,在许多品系中不应该出现卫生品系特有的行为,但是实际上却出现了一个。按罗森布勒自己的话来说:“我们不可能忽略这个结果,无论我们多么想这样做,但我们这个基因假设是基于其他数据的。”一个可能的解释是那个异常的品系发生了一个突变,尽管这并不是那么可信。
1700244046
1700244047 *20 第70页:我们可以把这种行为概括地称为联络。
1700244048
1700244049 我现在发觉我对这样处理动物联络的方式有些不满意了。约翰·克雷布斯和我在两篇文章里都主张大多数动物的信号都既不是有益的,也不是欺骗性的,更准确地说应该是有操作性。信号是一个动物利用另一个动物的肌肉力量的方式。夜莺的歌声并不包含信息,甚至连一点虚假的信息也没有。它是很有说服力的,催眠并且吸引人的演讲。在《延伸的表型》一书中我写了这类主张符合逻辑的结论,我也在本书第13章里简要介绍了部分内容。克雷布斯和我认为信号是通过我们所谓的读心术和操纵性相互作用而进化来的。关于整个动物信号的另外一个令人震惊的尝试来自阿莫兹·扎哈维。在第9章的一个尾注中,我以比本书第一版相比更加认同的语气讨论了扎哈维的看法。
1700244050
1700244051 第5章 进犯行为:稳定性和自私的机器
1700244052
1700244053 *21 第79页:进化稳定策略
1700244054
1700244055 我现在更喜欢用下面这种简洁的方法解释ESS的关键概念。ESS就是与它的副本能很好相处的一种策略。理由如下:一个成功的策略是在整个种群中占大多数的策略。因此,它就倾向于遇到很多与它一样的副本。除非它能够很好地处理与自己副本的关系,否则它就很难胜出。这个定义没有梅纳德·史密斯的数学定义精确,而且因为这个定义事实上并不完整,所以它也没法取代他的定义。但它的优势在于从直觉上抓住了ESS的基本概念。
1700244056
1700244057 比起开始撰写本章之时,以ESS的方式来思考已经在生物学家之间变得更加普遍。梅纳德·史密斯本人在《进化与博弈论》(Evolution and the Theory of Games )一书中总结了截至1982年这一概念的发展。此领域的另一个主要贡献者杰弗里·帕克也写了一则稍微新一点的评论。罗伯特·阿克塞尔罗德的《合作的进化》运用了ESS理论,但是我不会在这里讨论它,因为我的两个新章节之一,《好人终有好报》,主要就是为了解释阿克塞尔罗德的观点而写的。在本书第一版之后,我自己也有关于这个主题的文章发表,名为“好的策略还是进化稳定策略?”(‘Good Strategy or Evolutionarily Stable Strategy?’),还有一篇是接下来会被提及的关于掘土蜂的合作论文。
1700244058
1700244059 *22 第85页……还击策略,在进化上是稳定的。
1700244060
1700244061 很不幸的是,这个陈述是错误的。在梅纳德·史密斯和普赖斯的原始文献中就有一个错误,而我在本章中重复了一遍。我甚至使这个错误更加恶化,因为我做出了一个很愚蠢的声明,宣称试探性还击策略“几乎”是一个ESS(如果一个策略“几乎”是ESS,那么它实际就不是,进而会被淘汰)。试探性还击策略之所以看上去和一个ESS如此相似,是因为在一群还击策略者中,没有任何其他策略做得更好。但是在一群还击策略者中,鸽子做得一样好,因为其行为和还击策略者的行为无法分辨。因此鸽子才能够插入该种群内。问题就出现在接下来发生的事上。盖尔(J. S. Gale)和伊夫斯(Revd L. J. Eaves)使用计算机模拟了一个动物种群多代的进化。他们发现模拟中真正的ESS其实是一个老鹰与恃强凌弱者的稳定组合。这并不是早期关于ESS的文献经过此类动态处理而发现的唯一错误。另一个很好的例子是我自己的一个错误,我会在第9章的注解中加以讨论。
1700244062
1700244063 *23 第86页:遗憾的是,对于在自然界中各种活动所造成的损失以及带来的利益,目前我们知之甚少,不能够给出实际数字。
1700244064
1700244065 我们现在已经有了一些很好的关于自然界中利益及损失的野外测量结果,也已经被特定的ESS模型采用。北美的金色掘土蜂的数据就是其中最好的几个之一。掘土蜂并不是我们所熟悉的秋季蜜糖罐上画的群居黄蜂,后者只是为蜂群工作的雌性工蜂。每一只雌性的掘土蜂都是自行其是的。它整个生命都是为了为它的幼虫提供食物以及庇护而存在的。通常来说,一只雌蜂一开始会在树干中打出一个较长的圆孔,其底部则是一个挖空的洞穴。接下来她会出发去捕获猎物(对金色掘土蜂来说猎物就是蚂蚱或长角螽斯)。当它找到猎物时,它会先蜇伤猎物而使其麻醉,再将其拖回自己挖掘的洞穴内。在积累了四到五只蚂蚱之后,它会把卵产在最上面,然后将孔洞封死。卵进而孵化成幼虫,以那些蚂蚱为食。顺带说一句,把猎物麻醉而非杀死是为了防止其腐烂,使其在幼虫食用时仍然是活着的,因此也是新鲜的。正是因为类似的姬蜂也有这种可怕的习性才促使达尔文写道:“我不能说服自己相信一个仁慈且万能的上帝会有意创造姬蜂这样明显故意以活的毛毛虫喂食幼虫的生物……”他也许也可以用法国厨师煮活龙虾以保持其风味作为一个例子。让我们回到那只雌性掘土蜂的故事,它是很独立的,除了在同一区域,还有很多其他的雌蜂也在独自地干着同样的事情,不过其中一些会直接占用其他蜂挖好的洞穴,而不是辛辛苦苦地再挖一个。
1700244066
1700244067 简·布罗克曼博士是在黄蜂领域的珍妮·古道尔(Jane Goodall)。她来自美国,和我一同在牛津工作,她带来了汗牛充栋般的数据,记录了两个完整种群生活中的几乎每一个事件,而这两个种群中的每一只雌蜂都有着单独的标记。这份记录是如此的完善,以至于能够很清晰地画出每一只黄蜂个体的时间预算。时间是一个经济学商品:在生活的某一方面花费了较多时间,能花在另一方面的时间就少了。格拉芬把我们叫到一起并教会了我们如何正确地思考时间损耗及繁殖利益。我们在新罕布什尔的种群的雌蜂间发现了一个真实的混合型ESS的证据,尽管我们在另一个密歇根种群里一无所获。大体来说,新罕布什尔的黄蜂们要么挖掘自己的巢穴,要么侵占其他黄蜂所挖的巢穴。根据我们的解释,因为有些巢穴被挖掘者遗弃因此是可用的,所以黄蜂能从侵占中受益。尽管侵占一个巢穴不需要付出太多努力,但侵占者很难知道该巢穴究竟被遗弃与否。那么接下来几天它都会面临双重占有的风险,也许到头来它回来时发现洞已经被封死,它所有的努力就都付之东流了——因为另外那个占有者已经产卵并且获得了所有的好处。如果在一个种群中侵入的数量过多,可用的洞穴就会变得稀少,双重占有的概率也会增高,这样就值得挖洞了。相反,如果许多的黄蜂都在挖洞,大量的洞穴使得侵占变得有利可图。在一个挖掘和侵占差不多有利的种群中会有一个临界侵占比例。如果实际比例低于该临界比例,自然选择倾向于入侵,因为可用的限制洞穴数量十分充足。如果实际比例高于临界比例,可用的洞穴就会产生短缺,自然选择也就会倾向于挖洞。因此,在种群中就维持着一个平衡。细致、定量的证据显示这是一个真实的混合型ESS,每一个黄蜂个体都有挖洞或侵占的可能性,而不是混合了挖洞或侵占专家的一个群体。
1700244068
1700244069 *24 第91页:……再精彩不过地展示了这种行为上的不对称性。
1700244070
1700244071 有一个来自戴维斯(N. B. Davies)的比廷贝亨关于“留驻者总是胜利”的实验更一目了然的例子。戴维斯研究的是帕眼蝶。廷贝亨的工作成果都是在ESS理论发现之前做出的,而我在本书第一版对ESS的解释都有些马后炮。戴维斯是在ESS理论的启发下开始构思他的蝴蝶研究的。他发现在牛津附近的怀特姆森林中,雄性蝴蝶个体都会保卫太阳的光斑。雌性都受到光斑的吸引,因此光斑就成了一个有价值的资源,值得为之而战。雄性的数量大于光斑的数量,剩余的雄性就在茂密的树冠处等待着它们的机会。通过捕捉雄性,然后再将它们一个一个地释放在一个光斑上,戴维斯发现无论先释放的是哪一只个体,它都会视自己为光斑的主人,而第二个抵达该光斑的则会被视作“侵入者”。毫无例外,所有的侵入者都会迅速地承认失败,让主人拥有对光斑的独自掌控权。在最后一个决定性试验中,戴维斯成功地“愚弄”了两只蝴蝶,让它们都认为自己才是主人而另一只是侵入者。只有在这种情况下,一场重大且长期的战斗才得以爆发。顺便说一下,为了简化问题,在上面所有例子中我都只提到了单独一对蝴蝶,但实际上,这当然是由很多对蝴蝶组成的具有统计学意义的样本。
1700244072
1700244073 *25 第93页:似非而是的ESS
1700244074
1700244075 詹姆斯·道森(James Dawson)先生在给《泰晤士报》(1977年12月7日)的信中记录了另一个可能看上去是似非而是的ESS例证:“几年时间里,我注意到当一只海鸥将一根旗杆作为制高点时,总是会激起另一只海鸥试图降落其上的欲望,而这和两只鸟的体形大小毫无关系。”
1700244076
1700244077 关于似非而是的策略最令人满意的例子来自斯金纳箱里的家猪。该策略和ESS同样稳定,但是我们最好称之为DSS(Developmentally Stable Strategy,发育上的稳定策略),因为这个策略是在动物自己的生存时间内出现的,而非进化意义上的时间。斯金纳箱里的动物会学会自己喂养自己,通过按下一个杠杆,食物就会被自动地运送到食槽之内。试验心理学家很习惯将鸽子或小鼠放入小型的斯金纳箱中,很快小动物们就能够学会通过按下那些精巧的小杠杆来获得食物作为回报。猪也能学会做同样的事,当然是在一个放大版的斯金纳箱中,按压的也是一个非常不精巧的猪鼻杠杆(我在很多年前看过一个相关的研究录像,我清晰地记得当时快要笑死了)。鲍德温(B. A. Baldwin)和米斯(G. B. Meese)利用斯金纳猪圈训练了几头猪,但故事稍微有些不同。他们将猪鼻杠杆放在猪圈的一端,食物分发器放在另外一端。因此,里面的猪就需要先按动杠杆,然后赶紧跑到猪圈的另外一端获取食物,然后跑回杠杆,重复之前的动作。这听上去还不赖,但鲍德温和米斯把猪成对地放入该装置。这样其中一只猪就有机会压榨另外一只了。“奴隶猪”就往返跑着按压杠杆,“主人猪”则坐在食槽旁边享受着刚分发的食物。每一对猪都形成了此类稳定的“主人/奴隶”的关系,一个工作和奔跑,另一个坐享大部分食物。
1700244078
1700244079 现在来揭晓为什么似非而是策略中“主人”和“奴隶”的标签全都是颠倒的。每当一对猪达到稳定状态时,最终扮演“主人”或“剥削者”的都是从其他方面看很顺从的那只。而所谓的“奴隶猪”,也就是做了所有工作的那只,是通常强势的那只。任何了解这些猪的人都会做出与之相反的预测,即那只强势猪会当主人,主要负责吃,而另外那只顺从猪应该是少吃多做的奴隶。
[ 上一页 ]  [ :1.70024403e+09 ]  [ 下一页 ]