打字猴:1.70025001e+09
1700250010
1700250011 我们大可用玩笑轻松打发掉“半只眼睛有什么用”这种问题:哪半只?左边还是右边?我很理解道金斯那快狠准的回答:半只眼睛比49%的眼睛要好1%。但是对于我们这些一直企图拼凑出半只眼睛到底长什么样子的人来说,49%的眼睛反而比较神奇。事实上,“半只眼睛”确实是提问的好入口。眼睛确实可以被适当地分为两半:前半部和后半部。参加过眼科医学会议的人都会发现,医师往往自动分成两类:一类专门负责眼球前半部(白内障和屈光手术外科医师,专门攻克晶状体与角膜难题),以及另一类专门负责眼球后半部(视网膜,专门攻克黄斑退化等造成失明的主要原因)。这两类医师往往很少交谈,而当他们偶尔聊起来时,好像用的不是同一种语言。不过这种差异是有迹可循的,如果我们把眼球所有的光学装备一一拆掉,眼睛就剩下一层裸露的视网膜,就是一层感光细胞层,上面空无一物。而这层裸露的视网膜正是进化的中心。
1700250012
1700250013 裸露的视网膜听起来很怪,但是它其实与另外一个也很怪异的环境十分相配,那就是我们在第一章曾经提过的黑烟囱海底热泉。这些热泉是一系列奇异生物的家园,这里所有的生物,不论用哪种方式生存,都要依赖此地的细菌,而这些细菌又以热泉冒出的硫化氢为生。或许所有生物中最怪异也最有名的,是那些身长可达两米多的巨大管状蠕虫。虽然这些管状蠕虫可以算是蚯蚓的远亲,却是无肠的怪物。既没有嘴巴也没有肠子,而是依赖生活在它们身体组织内的硫细菌提供营养。热泉还有其他巨大生物,比如巨大的蛤蜊和贻贝。
1700250014
1700250015 所有这些巨大生物都只存在于太平洋,而大西洋热泉也有它自己的怪异生物,尤其是那些成群结队的盲虾,又叫大西洋中脊盲虾,一群群聚在黑烟囱下面。盲虾拉丁文原名的意思就是“裂谷中的无眼盲虾”,很不幸这是当初发现者的错误命名。如盲虾的名字所述,以及它们居住在漆黑的海底来看,这些盲虾并没有典型的眼睛——它们并没有类似居住在浅海的亲戚那样的眼柄。不过在盲虾的背上却长有两大片薄片,而这些长条薄片虽然外表看来平凡无奇,但在深海潜艇的强光照射之下,会反射出如猫眼一般的光芒。
1700250016
1700250017 首先注意到这些薄片的是美国科学家辛迪·范·多佛,她的发现是现代科学研究最值得注意的一页。多佛就像法国小说家凡尔纳(《八十天环游世界》和《海底两万里》等科幻小说的作者)笔下的主角,而且也如同她本身所研究的对象一样,都是濒临绝种的稀有动物。多佛现在领导美国杜克大学的海洋生物学实验室,身为深海潜水艇阿尔文号的首位女性驾驶员,她几乎到访过所有已知的海底热泉,许多尚未被深入探索。后来她也在其他冰冷的海底发现和热泉区一样的巨大蛤蜊和管状蠕虫,这些地方都从地底冒出甲烷,显然造成海底世界如此繁茂的背后推手,是化学成分而非热能。现在回到20世纪80年代,当年我们对许多东西都还一无所知,因此当多佛把海底盲虾的薄片组织送给无脊椎动物的眼睛专家辨识时,必定觉得紧张不安,甚至可能觉得问了个傻问题:这些可能是眼睛吗?她得到一个很简洁的答案:如果从眼睛上撕下一块视网膜,可能差不多就是这个样子。如此看来尽管这些盲虾住在漆黑的深海,缺少整套正常的眼睛装备(如晶状体、虹膜等),但是它似乎有裸露的视网膜,就是眼睛的后半部分。
1700250018
1700250019 随着研究越来越深入,发现的结果远远超过多佛的期望。科学家发现盲虾背上裸露的视网膜里带有感光色素,而且和人类眼睛中负责感光的色素(视紫红质)非常相近。而且尽管外观看起来并不一样,但是包着这些色素的感光细胞和普通虾眼的感光细胞也是一样的。所以,或许这些盲虾真的能在海底看见东西。多佛想,或许热泉会放出微弱的光芒?毕竟,炽热的铁丝能发光,而热泉里也充满了溶解的发热金属。
1700250020
1700250021 从来没有人把阿尔文号的大灯关掉过。在漆黑的深海里,这么做不只没有意义,甚至危险至极,因为潜水艇很有可能会漂到热泉上方,然后艇里的人就都被煮熟了,或者至少会烧坏仪器。多佛还没有在热泉尝试过这样做,但她成功说服了地质学家约翰·德兰尼去做这件事,那时德兰尼正好要下去探险,多佛劝他把灯关掉,然后把数字照相机对准热泉。实验结果显示,尽管对肉眼来说,海底热泉是一片漆黑,但是在热泉口,照相机拍到了一圈清晰的光环,“悬浮在漆黑的背景中,像那只露齿而笑的柴郡猫”。尽管如此,第一次尝试并没有告诉我们太多光的信息,比如它是什么颜色或者强度多少。我们什么也看不见,那么这里的盲虾真的能“看到”热泉的光辉吗?
1700250022
1700250023 如同炽热的铁丝那样,科学家预测热泉的光应该是红色的,波长大约在近红外区。理论上,热泉口不应射出光谱上波长较短的光,比如黄光、绿光和蓝光。早期测量的方式是在镜头前面放置彩色滤镜进行拍摄,虽然方法粗糙,结果还是证实了这项假设。如果假设,盲虾的眼睛能看到热泉的光芒,那么这些眼睛应该会被调整成为适合看红光或近红外线。然而直接研究虾眼得出的实验结果却恰恰相反,这些盲虾视紫红质对绿光反应最敏感,波长在500纳米左右。当然这可能只是实验误差,但是后来直接测量了盲虾视网膜的电学反应(非常难做),结果也显示这些盲虾只看得到绿光。这真是非常奇怪。如果热泉发出红光,但是盲虾只能看到绿光,那么它们和瞎了有什么区别?所以或许这些裸露的视网膜其实和盲眼洞穴鱼的眼睛一样,只是退化之后毫无用处的器官?然而这些视网膜是长在背上而不是头上,它们应该不是退化的产物。但是要证实这个猜测可不容易。
1700250024
1700250025 后来科学家找到这些盲虾的幼虫,从而发现了眼睛的功能。热泉世界并不如外表看起来那样永恒不朽,这些热泉烟囱其实很容易死亡,它们会被自己的排出物堵死,寿命和人类差不多。随后新的热泉会从海底的其他地方冒出,可能在好几千米之外。热泉的生物若想存活,就必须越过这一段距离,才能从死掉的热泉来到新生的热泉。虽然大部分成虫会因为适应性的问题被困住(想想那些巨大又无口无肠的管状蠕虫),但是它们却可以在海中散布大量的幼虫。至于幼虫如何抵达新生的热泉,大概靠的是运气(由深海洋流冲走),或者是靠某些未知的器官(可以探测海中化学物质浓度梯度),这还不清楚,但是可以确定的是幼虫完全不适合生活在热泉环境。一般来说幼虫生活在较浅的海域,虽然依然算是深海,但是会有一丝阳光射入。也就是说,幼虫生活在可以用眼睛的世界。
1700250026
1700250027 首先被找到的热泉区生物幼虫,是一种被称为深洋热泉蟹的螃蟹幼虫。有趣的是,这种螃蟹和盲虾一样,也没有正常的眼睛,却有一对裸露的视网膜。不过和盲虾的不同之处在于,螃蟹的视网膜并不长在背上,而是长在头上,就长在平常该有眼睛的地方。而更令人惊讶的是,这些螃蟹的幼虫有完整的眼睛,至少对于一只螃蟹来说是完整的。所以当用得到的时候,这些螃蟹是有眼睛的。
1700250028
1700250029 接下来又找到好几种幼虫。在盲虾的旁边还有许多其他的热泉盲虾,因为它们不像盲虾会形成大聚落,所以容易被忽略。这些热泉盲虾也有裸露的视网膜,不过长在头上而非背上。和螃蟹一样的是,它们的幼虫也有完整的眼睛。盲虾的幼虫则是最后一个被找出来的,一部分原因是因为它们和其他热泉盲虾的幼虫长得很像,另一个原因是,我们一开始没想到它们的头上也有完整的眼睛。
1700250030
1700250031 在幼虫身上找到完整的眼睛意义重大,因为这代表了裸露的视网膜并非只是退化的眼睛,并不是经过世世代代的功能性退化之后,仅存下来为适应漆黑世界的残留物。幼虫有完整的眼睛,它们在发育的过程中失去了眼睛,那么这就和进化过程中不可逆的功能退化无关,不论失去眼睛的代价为何,这背后一定有某种原因。自然裸露的视网膜也不会是从动物的背上直接进化出来,然后在黑暗世界里逐步进化成视力极为有限、永远无法和正常眼睛匹敌的眼睛。事实上,当幼虾渐渐成熟,它们的眼睛会慢慢退化,几乎消失,那些复杂的光学系统会一步一步被有序地吸收,最后只剩下那裸露的视网膜。对于盲虾而言,成虾的眼睛整个消失了,而裸露的视网膜似乎会重新在背上生成。结果显示,在许多动物身上,裸露的视网膜似乎要比完整的眼睛有用多了,这绝非偶发事件,不是一种巧合,那么到底是为什么呢?
1700250032
1700250033 裸露视网膜的价值,取决于分辨率与感光度之间的平衡。分辨率是指能看见影像细节的能力。分辨率受到晶状体、角膜等的调节,这些组织可以帮助光线在视网膜上聚焦,从而形成清晰的影像。感光度则有完全相反的要求,感光度指的是能探测到光子的能力。如果眼睛的感光度很差,那就不能看见太多光线。以人眼为例,我们可以放大瞳孔,或者利用对光敏感性较高的细胞(视杆细胞)来增加感光度。尽管如此,能提高的程度有限,并且任何帮助增加分辨率的机械装置,最终都会限制我们的感光度。要让感光度达到最高的终极办法,就是拿掉晶状体把光圈放到无限大,让光线可以从任何一个角度进入眼睛。而所谓最大的光圈,其实就是没有光圈,也就是裸露的视网膜。根据上述因素,做一个简单的计算便可以算出,热泉盲虾的裸露视网膜,对光的敏感度是幼虫的700万倍。
1700250034
1700250035 因此,这些盲虾牺牲了分辨率,来换取探测周围极弱光线的感光度,或者至少知道光从哪个方向来,是从上面或下面、前面或后面。能够探测光线,对于这里的盲虾来说很可能是生死存亡的关键,毕竟这里不是热到可以瞬间煮熟盲虾,就是冷到冻死它们。我想不小心漂走的盲虾,大概就像在无垠外太空中和母船失去联络的航天员一样。这或许可以解释为何盲虾的眼睛长在背上,因为它们成群生活在黑烟囱的下方。毫无疑问,对它们来讲,当头埋在一大堆虾群中,能从背上探测到上方恰到好处的光线,会是最安心的。而它们那些比较独立的盲虾亲戚则对眼睛有不同的需求,所以裸露的视网膜长在了头上。
1700250036
1700250037 我们晚一点再来讨论为什么在这个红光世界中盲虾却只能看到绿色(它们可不是色盲)。前面所说的结论就是,半只眼睛,也就是裸露的视网膜,在某些情况下比整只眼睛都要好,更不用说半只眼睛远远胜过没有眼睛了。
1700250038
1700250039 这个简单的、裸露的视网膜,也就是一大片感光块,同时也是许多讨论眼睛进化的起点。达尔文本人就认为感光块是一切的起源。不幸的是在断章取义、错误引用他的意见的人中,除了那些拒绝相信自然进化的人,偶尔还有一些科学家企图解决“达尔文也无能为力的难题”。下面就是达尔文曾经写下的内容,一字不差:
1700250040
1700250041 眼睛具有不能模仿的配置功能,可以对不同距离调节其焦点,容纳不同量的光和校正球面像差和色彩的色差,如果说眼睛能由自然选择进化出来,我也承认,这种说法好像是极其荒谬的。
1700250042
1700250043 然而紧接着的下一段文字却常常被忽略,而这一段清楚地指出,达尔文并不认为眼睛不能被解释:
1700250044
1700250045 理性告诉我,如果能够证明从简单而不完全的眼睛,到复杂而完全的眼睛之间,存在无数个阶级,并且和已观察到的实际情形一样,每级对于它的所有者都有用处;如果眼睛也如已观察到的实际情形那样曾经发生过变异,并且这些变异是能够遗传的;同时如果这些变异,对于处于变化的外界环境中的任何动物是有用的;那么,我相信完善而复杂的眼睛,能够通过自然选择而形成。虽然这在我们的想象中似乎难以实现,却不能认为这可以颠覆我的学说。
1700250046
1700250047 简单来说,如果某些眼睛比其他眼睛要复杂一些,而如果这些视觉差异是可以遗传的,又如果视力不良是个不利的条件,那么达尔文认为,眼睛就会进化。上述条件其实都存在。首先这世上充满了简单又不完美的眼睛,从简单的眼点或视窝,到缺少晶状体的眼睛,到具有相当程度的复杂性、一部分或全部吻合达尔文所谓的“不能模仿的配置功能”。当然大家视力都不一样,有些人近视戴眼镜,有人不幸失明。如果看不清楚的话,我们会更容易成为狮虎的盘中餐,或被公交车撞到。同时,所谓“完美”是相对的。好比老鹰眼睛的分辨率比我们高4倍,它可以看清一两千米以外的东西。而我们眼睛的分辨率又比许多昆虫高大约80倍,它们看到的画面充满马赛克,称为艺术品还差不多。
1700250048
1700250049 尽管我可以假设大部分人都能毫不迟疑地接受达尔文所列的条件,但是一般人恐怕还是难以想象,中间的过渡阶段是什么样子。套用幽默作家伍德豪斯的话说就是:就算不是无法克服,也远非可以克服。A除非每一个阶段都各有用处,否则就如前述,眼睛不可能进化。不过事实A伍德豪斯的原句是:“我看得出来,他即使没有不满,也远非满意了。”上,整个过程可以轻易实现。瑞典的两位科学家,丹-埃里克·尼尔森和苏珊·佩格尔利用计算机模型,模拟出一系列进化步骤(见图7.1)。模型中每一步都略有改进,从最简单的裸露视网膜开始,直到非常接近鱼眼的眼睛(和我们的也相去不远)。当然它可以继续改进下去(事实也确实如此)。我们还可以加上虹膜,让瞳孔可以扩张收缩,用来控制进入眼睛的光线量,从而适应各种情况,从明亮的日光到昏暗的夕阳。我们也可以在晶状体上加肌肉,用来推或拉它改变形状,让眼睛可以对不同距离的物体进行聚焦。不过很多眼睛都没有这些微调机关,而且只有在眼睛进化出来之后,才有可能把它们加上去。因此,本章的目的先放在进化出可以成像的眼睛上,尽管这离配置完备还有点远。[2]
1700250050
1700250051
1700250052
1700250053
1700250054 图7.1 根据尼尔森与佩格尔所推测的进化出一只眼睛所需要的连续步骤,以及每一步需要花大约几代来产生。假设每一代是一年,那么整个过程只需要大约不到40万年就可以完成。
1700250055
1700250056 眼睛进化过程中最关键的一点在于,即使是最原始的晶状体也要比没有晶状体好(当然是对黑烟囱海底热泉以外的环境来说),模糊的影像还是比没有影像要好。但是和前面一样,在分辨率与感光度之间又要斟酌一番。比如说,就算完全没有晶状体,光靠针孔也可以形成清晰的影像。也有少数物种使用这种针孔式眼睛,代表者是鹦鹉螺,它是古生物菊石类存活至今的亲戚。[3]但是对鹦鹉螺来说,感光度就是个问题,因为光圈要很小才能形成清晰的影像,因此能进入眼睛的阳光就很少。而在暗处本来光线就少,影像会因为太暗而难以辨析,这正是鹦鹉螺的问题,它恰好就住在不见天日的深海中。英国萨塞克斯大学的神经学家迈克尔·兰德是动物眼睛界的权威,他曾经计算过,如果给同样大小的眼睛加上晶状体,可以让感光度增加400倍,分辨率增加100倍。因此,任何能够进化出某种晶状体的方式,都能带来很大的好处,这个好处就是可以立刻增加存活率。
1700250057
1700250058 三叶虫很可能进化出了第一只真正能成像的眼睛。这些节肢动物身着片状铠甲,宛如中世纪的欧洲骑士一般,而它们的众多亲族足足在海底遨游了3亿年之久。最古老的三叶虫眼睛发现于目前已知最古老的三叶虫化石,大约有5.4亿年历史,我们在本章之初提过,那时寒武纪大爆发刚开始没多久。虽然和3000万年以后全盛时期的眼睛相比,这只眼睛相当朴素,但是眼睛就这么突然地出现在三叶虫化石中,就引出了一个问题:眼睛真的可以如此快速进化吗?如果是这样,那很可能就像帕克所主张的,视觉的进化引发了寒武纪大爆发。但如果不是,那么代表眼睛早就形成了,只不过因为某种原因没有形成化石,而这样一来,眼睛就不可能引起任何生物大爆发。
1700250059
[ 上一页 ]  [ :1.70025001e+09 ]  [ 下一页 ]