1700264490
XIII 型分泌系统与ATP合酶同源参见:Diepold, A.; Armitage, J. P.(2015). Type III secretion systems: the bacterial flagel lum and the injectisome.Philosophical transactions of the royal society b biological sciences, 370(1679)
:20150020; Erhardt, M.;Namba, K.; Hughes, K. T.(2010). Bacterial nanomachines: the flagellum and type III injectisome.Cold Spring Harbor perspectives in biology,2(11)
:a000299。
1700264491
1700264492
XI 与氢离子结合能力是ATP合酶转动方向的决定因素参见:Cross, R. L.; Müller, V.(2004). The evolution of A-,F-, and V-type ATP synthases and ATPases: reversals in function and changes in the H+/ATP coupling ratio.FEBS letters, 576(1-2)
:1‐4。
1700264493
1700264494
XII 能量转换氢化酶就是复合物I的进化原型,参见:Efremov, R. G.; Sazanov, L. A.(2012). The coupling mechanism of respiratory complex I—a structural and evolutionary perspective.Biochimica et Biophysica Acta, 1817(10)
:1785‐1795; Hed derich R.(2004). Energy-converting [NiFe] hydrogenases from archaea and extremophiles: ancestors of complex I.Journal ofbioenergetics and biomembranes, 36(1): 65‐75; Schoelmerich, M. C.; Müller, V.(2020). Energy-converting hydrogenases: the link between H2 metabolism and energy conservation.Cellular and molecular life sciences, 77, 1461–1481; Moparthi, V. K.;Hägerhäll, C.(2011). The evolution of respiratory chain complex I from a smaller last common ancestor consisting of 11 protein subunits.Journal of molecular evolution, 72(5-6)
:484‐497。
1700264495
1700264496
第二十二章
1700264497
1700264498
I 发现电子分歧参见:Li, F.; Hinderberger, J.; Seedorf, H.; et al.(2008). Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the Butyryl-CoA Dehydrogenase/Etf Complex from clostridium kluyveri.Journal of Bacteriology, 190(3): 843-850; Kaster, A.-k.; Moll, J.; Parey, K.; Thauer. R. K.(2011).Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea.Proceedings of the National Academy of Sciences, 108(7): 2981-2986。
1700264499
1700264500
II 威廉·马丁与尼克·莱恩的电子传递链起源图景参见:Lane, N.; Martin, W. F.(2012). The origin of membrane bio energetics.Cell, 151(7)
:1406-1416; Kulkarni, G.; Mand, T. D.; William W. Metcalf, W. W.(2009). Energy conservation viahydrogen cycling in the methanogenic archaeon methanosarcina barkeri.Proceedings of the National Academy of Sciences, 106(37): 15915-15920; Sousa, F. L.; Thiergart, T.; Landan, G.; et al.(2013). Early bioenergetic evolution.Philosophicaltransactions of The Royal Society B Biological Sciences, 368(1622): 20130088; Sojo, V.; Pomiankowski, A.; Lane, N.(2014). A bioenergetic basis for membrane divergence in archaea and bacteria [published correction appears inPLoS Biol, 2015 Mar, 13(3): e1002102].PLoS Biology, 12(8): e1001926; Sojo, V.; Herschy, B.; Whicher, A.; Camprubí, E.; Lane, N.(2016). The Origin of Life in Alkaline Hydrothermal Vents.Astrobiology, 16(2): 181-97。
1700264501
1700264502
III Sauer, U.; Canonaco, F.; Heri, S.; Perrenoud, A.; Fischer, E.(2004). The soluble and membrane-bound transhydroge nases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli.Journal of biological chemistry, 279(8): 6613-6619. D; Bennett, B.; Kimball, E.; Gao, M.; et al.(2009). Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli.Nature chemical biology, 5(8): 593–599。
1700264503
1700264504
IV 产甲烷古菌与产乙酸细菌共生吗,参见:Schuchmann, K.; Müller, V.(2016). Energetics and Application of Heterotrophy in Acetogenic Bacteria.Applied and environmental microbiology, 82(14): 4056-4069。
1700264505
1700264506
V 威廉·马丁提出的产甲烷古菌与产乙酸细菌内共生成为真核生物祖先的假说,参见:Martin, W. F.; Garg, S.; Zimorski,V.(2015). Endosymbiotic theories for eukaryote origin.Philosophical transactions of The Royal Society B Biological Sciences, 370(1678)
:20140330。
1700264507
1700264508
VI 细菌和古菌的复制体的差异参见:Leipe, D. D.; Aravind, L.; Koonin, E. V.(1999). Did DNA replication evolve twice in dependently?.Nucleic Acids Research, 27(17): 3389-3401; Bleichert, F.; Botchan, M. R.; Berger, J. M.(2017). Mechanisms for initiating cellular DNA replication.Science, 355(6327): eaah6317。
1700264509
1700264510
VII 帕特里克·福泰尔的DNA复制系统起源图景参见:Forterre P, Filée J, Myllykallio H. Origin and Evolution of DNA and DNA Replication Machineries. In: Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience; 2000-2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK6360/; Forterre, P.; Gadelle, D.(2009). Phylogenomics of DNA to poisomerases: their origin and putative roles in the emergence of modern organisms.Nucleic acids research, 37(3): 679-692。
1700264511
1700264512
VIII 腺病毒的DNA复制机制参见:Pacesa, M.(2016). Purification of Recombinant Adenoviral Hexon Proteins for Genera tion of Virus-specific Antibodies & Next-generation Sequencing of Adenoviral Genomes. 10.13140/RG.2.2.20211.53282; Salas, M.; Holguera, I.; Redrejo-Rodríguez, M.; De Vega, M.(2016). DNA-Binding Proteins Essential for Protein-Primed Bacterio phage Φ29 DNA Replication.Frontiers in molecular biosciences, 3. https://doi.org/10.3389/fmolb.2016.00037。
1700264513
1700264514
IX 病毒用六元环的移位酶把DNA装入衣壳粒,参见:Patel, S. S.; Picha, K. M.(2000). Structure and Function of Hex americ Helicases.Annual review of biochemistry, 69(1): 651–697; Happonen, L. J.; Oksanen, E.; Liljeroos, L.;et al.(2013). The Structure of the NTPase that powers DNA packaging into sulfolobus turreted icosahedral Virus 2.Journal of Virology, 87(15): 8388-8398。
1700264515
1700264516
X 病毒的冈崎片段参见:Miller, E.; Kutter, E.; Mosig, G.; et al.(2003). Bacteriophage T4 Genome.Microbiology and molecular biology reviews, 67(1): 86-156; Nelson, S.; Kumar, R.; Benkovic, S.(2008). RNA primer handof in bacteriophage T4 DNA replication: The role of single-stranded DNA-binding protein and polymerase accessory proteins.The Journal of biological chemistry, 283(33): 22838-46。
1700264517
1700264518
XI 病毒与细胞用来复制DNA的酶的亲缘关系参见:Filée, J.; Forterre, P.; Sen-Lin, T.; Laurent, J.(2002). Evolution of DNA polymerase families: evidences for multiple gene exchange between cellular and viral proteins.Journal of molecular evolution, 54(6)
:763-773; Villarreal, L. P.; DeFilippis, V. R.(2000). A hypothesis for DNA viruses as the origin of eukaryotic replication proteins.Journal of virology, 74(15): 7079-7084。
1700264519
1700264520
XII 核黄素依赖型电子分歧酶参见:Wagner, T.; Koch, J.; Ermler, U.; Shima, D.(2017). Methanogenic heterodisulfide reduc tase (HdrABC-MvhAGD) uses two noncubane [4Fe-4S] clusters for reduction.Science, 357(6352): 699-703; Kai, S.; Chowdhury, N. P.; Müller, V.(2018). Complex Multimeric [FeFe] Hydrogenases: biochemistry, physiology and new opportunities for the hydrogen economy.Frontiers in microbiology, 04 December , https://doi.org/10.3389/fmicb.2018.02911。
1700264521
1700264522
XIII 古菌的甲基转移酶参见:Deobald, D.; Adrian, L.; Schöne, C.; et al.(2018). Identification of a unique Radical SAM methyltransferase required for the sp3-C-methylation of an arginine residue of methyl-coenzyme M reductase.Scientific reports, 8(1): 7404。
1700264523
1700264524
XIV 几种铁硫蛋白的结构相似性参见:Poehlein, A.; Schmidt, S.; Kaster, A. K.; et al.(2012). An Ancient Pathway Com bining Carbon Dioxide Fixation with the Generation and Utilization of a Sodium Ion Gradient for ATP Synthesis.PLOSONE, 7(3): e33439; Schuchmann, K.; Chowdhury, N. P.; Müller, V.(2018). Complex Multimeric [FeFe] Hydrogenases: Bio chemistry, Physiology and New Opportunities for the Hydrogen Economy.Frontiers in microbiology, 9: 2911; Schuchmann,K.; Vonck, J.; Müller, V.(2016), A bacterial hydrogen‐dependent CO2 reductase forms filamentous structures.FEBS Journal, 283(7): 1311-1322; Schwarz, F. M.; Schuchmann, K.; Müller, V.(2018). Hydrogenation of CO2 at ambient pressure cata lyzed by a highly active thermostable biocatalyst.Biotechnology for biofuels, 11, 237。
1700264525
1700264526
XV 十二种核黄素依赖型电子分歧酶的进化关系参见:Poudel, S.; Dunham, E. C.; Lindsay, M. R.; et al.(2018). Origin and Evolution of Flavin-Based Electron Bifurcating Enzymes.Frontiers in microbiology, 9
:1762。
1700264527
1700264528
终章
1700264529
1700264530
I 用原子力显微镜看到了有机化学反应中的化学键变化,参见:de Oteyza, D. G.; Gorman, P.; Chen, Y.-C.;et al.(2013).Direct imaging of covalent bond structure in single-molecule chemical reactions.Science, 340(6139)
:1434-7。
1700264531
1700264532
II 基金观察到的最远的天体,参见:Klotz, I.(March 3, 2016). “Hubble Spies Most Distant, Oldest Galaxy Ever”. Seeker. Discovery, Inc. Retrieved February 5, 2020。
1700264533
1700264534
III 木星卫星的轨道共振产生了强烈的潮汐作用参见:Tyler, R. H.(2008). Strong ocean tidal flow and heating on moons of the outer planets.Nature, 456(7223): 770–772。
1700264535
1700264536
IV 钻探木卫二的计划参见:Powell, J.; Powell, J.; Maise, G.; Paniagua, J.(2005). NEMO: A mission to search for and return to Earth possible life forms on Europa.Acta astronautica, 57: 579–593; Weiss, P.; Yung, K. L.; Ng,T. C.; et al.(2008). Study of a thermal drill head for the exploration of subsurface planetary ice layers.Planetary and space science, 56: 1280–1292; Weiss, P.; Yung, K. L.; Kömle, N.; et al.(2011). Thermal drill sampling system onboard high-velocity impactors for exploring the subsurface of Europa.Advances in space research, 48(4): 743。
1700264537
1700264538
V 土卫二海洋参见:Platt, J.; Bell, B.(2014-04-03). NASA space assets detect ocean inside saturn moon.NASA。
1700264539
[
上一页 ]
[ :1.70026449e+09 ]
[
下一页 ]