打字猴:1.70026444e+09
1700264440 VII 杰克·绍斯塔克发现RNA自我复制能够促进原始细胞膜扩增,参见:Chen, I. A.; Roberts, R. W.; Szostak, J. W.(2004).The emergence of competition between model protocells.Science, 305(5689):1474‐1476。
1700264441
1700264442 VIII 杰克·绍斯塔克发现磷脂促进原始细胞膜吸收胶束,参见:Budin, I.; Szostak, J. W.(2011). Physical efects underlying the transition from primitive to modern cell membranes.Proceedings of the National Academy of Sciences, 108(13): 5249‐5254。
1700264443
1700264444 IX 脂肪酸合成参考文献:Dijkstra, Albert J., R. J. Hamilton, and Wolf Hamm. “Fatty Acid Biosynthesis.” Trans Fatty Acids. Oxford: Blackwell Pub., 2008. 12. Print.
1700264445
1700264446 X 古菌合成类异戊二烯细胞膜,参见:Jain, S.; Caforio, A.; Driessen, A. J.(2014). Biosynthesis of archaeal membrane ether lipids.Frontiers in microbiology, 5: 641。
1700264447
1700264448 第二十章
1700264449
1700264450 I 人工合成铁硫蛋白参见:Mutter, A. C.; Tyryshkin, A. M.; Campbell, I. J.; et al.(2019). De novo design of symmetric ferre doxins that shuttle electrons in vivo.Proceedings of the National Academy of Sciences, 116(29): 14557-14562。
1700264451
1700264452 II 能量转换氢化酶结构参见:Schoelmerich, M. C.; Müller, V.(2019). Energy conservation by a hydrogenase-dependent che miosmotic mechanism in an ancient metabolic pathway.Proceedings of the National Academy of Sciences, 116(13): 6329-6334;Shafaat, H. S.; Rüdiger, O.; Ogata, H.; Lubitz, W.(2013). [NiFe] hydrogenases: A common active site for hydrogen metabolism under diverse conditions.Biochimica et Biophysica Acta (BBA) – Bioenergetics, 1827(8–9): 986-1002。
1700264453
1700264454 III 尼克·莱恩和威廉·马丁关于原始细胞膜的能量代谢,参见:Lane, N.; Martin, W. F.(2012). The origin of membrane bioenergetics.Cell, 151(7): 1406‐1416。
1700264455
1700264456 IV 能量转换氢化酶工作机制参考文献:Kurkin, S.; Meuer, J.; Koch, J.; et al.(2002). The membrane-bound [NiFe]-hy drogenase (Ech) from Methanosarcina barkeri: unusual properties of the iron–sulphur clusters.European journal of biochemistry, 269(24): 6101-6111; Forzi, L.; Koch, J.; Guss, A. M.; et al.(2005). Assignment of the [4Fe–4S] clusters of Ech hydrogenase from Methanosarcina barkeri to individual subunits via the characterization of site-directed mutants.FEBS journal, 272(18): 4741-4753。
1700264457
1700264458 V 白烟囱假说对钠离子参与能量代谢的研究参见:Martin, W. F.; Sousa, F. L.; Lane, N. (2014). Energy at life’s origin.Science, 344(6188): 1092–1093。
1700264459
1700264460 VI 钠离子梯度驱动物质能量代谢参见:Pisa, K. Y.; Weidner, C.; Maischak, H.; Kavermann, H.; Müller, V.(2007). The coupling ion in the methanoarchaeal ATP synthases: H+ vs. Na+ in the A1Ao ATP synthase from the archaeon Methanosarcina mazei Gö1.FEMS microbiology letters, 277(1): 56–63; Schiel-Bengelsdorf, B. M.; Dürre, P.(2012). Pathway engineering and synthetic biology using acetogens.FEBS letters, 586(15): 2191–2198。
1700264461
1700264462 VII 逆向转运蛋白参见:Swartz, T. H.; Ikewada, S.; Ishikawa, O.; et al.(2005). The Mrp system: a giant among monovalent cation/proton antiporters?Extremophiles, 9(5): 345–354; Efremov, R. G.; Sazanov, L. A.(2012). The coupling mechanism of respiratory complex I—a structural and evolutionary perspective.Biochimica et biophysica acta, 1817(10):1785‐1795。
1700264463
1700264464 VIII 原始海洋盐度参见:Knauth, L. P.(2005). Temperature and salinity history of the Precambrian ocean: implications for the course of microbial evolution.Palaeogeography, Palaeoclimatology, Palaeoecology, 219(1-2): 53–69; Marty, B.; Avice,G.; Bekaert, D. V.; Broadley, M. W.(2018). Salinity of the Archaean oceans from analysis of fluid inclusions in quartz.ComptesRendus Geoscience, 350(4): 154–163。
1700264465
1700264466 IX Maden, B. E. H.; Monro, R. E.(1968). Ribosome-Catalyzed peptidyl transfer: efects of cations and pH value.EuropeanJournal of Biochemistry, 6(2): 309–316.
1700264467
1700264468 X Mulkidjanian, A. Y.; Bychkov,A. Y.; Dibrova, D. V.; et al.(2012). Origin of first cells at terrestrial, anoxic geothermal fields.Proceedings of the National Academy of Sciences, 109 (14) E821-E830.
1700264469
1700264470 第二十一章
1700264471
1700264472 I 尤金·库宁的ATP合酶起源图景参见:Mulkidjanian, A.; Makarova, K.; Galperin, M.; et al.(2007). Inventing the dynamo machine: the evolution of the F-type and V-type ATPases. Nature Reviews Microbiology, 5(11): 892–899。
1700264473
1700264474 II 六元环解旋酶的结构和作用参见:Patel, S. S.; Picha, K. M.(2000). Structure and Function of Hexameric Helicases.Annual review of biochemistry, 69(1): 651–697。
1700264475
1700264476 III ρ因子与ATP合酶进化同源,参见:Dombroski, A. J.; Platt, T.(1988). Structure of rho factor: an RNA-binding domain and a separate region with strong similarity to proven ATP-binding domains.Proceedings of the National Academy of Sciences, 85(8): 2538‐2542。
1700264477
1700264478 IV ρ因子工作机制参见:Adelman, J. L.; Jeong, Y. J.; Liao, J. C.; et al.(2006). Mechanochemistry of transcription termina tion factor Rho.Molecular cell, 22(5): 611‐621。
1700264479
1700264480 V TrwB参见:Tato, I.; Zunzunegui, S.; de la Cruz, F.; et al.(2005). TrwB, the coupling protein involved in DNA transport during bacterial conjugation, is a DNA-dependent ATPase.Proceedings of the National Academy of Sciences, 102(23):8156‐8161; Cabezon, E.; de la Cruz, F.(2006). TrwB: An F1-ATPase-like molecular motor involved in DNA trans port during bacterial conjugation.Research in microbiology, 157(4); 299–305。
1700264481
1700264482 VI DNA移位酶与接合质粒参见:Lawley, T. D.; Klimke, W. A.; Gubbins, M. J.; Frost, L. S.(2003). F factor conjugation is a true type IV secretion system,FEMS microbiology letters, 224(1): 1–15; Arutyunov, D.; Frost, L. S.(2013). F conjugation:Back to the beginning.Plasmid, 70 (1): 18–32; Klümper, U.; Droumpali, A.; Dechesne, A.; Smets, B. F.(2014). Novel assay to measure the plasmid mobilizing potential of mixed microbial communities.Frontiers in microbiology, 5:730; Gonzalez-Perez,B.; Lucas, M.; Cooke, L.; et al.(2007). Analysis of DNA processing reactions in bacterial conjugation by using suicide oligo nucleotides.The EMBO journal, 26(16): 3847-57; Fernández-González, E.; de Paz, H. D.; Alperi, A.; et al.(2011). Transfer of R388 derivatives by a pathogenesis-associated type IV secretion system into both bacteria and human cells.Journal of bacteriology, 193(22): 6257‐6265。
1700264483
1700264484 VII TrwK与TrwB进化同源参见:Arechaga, I.; Peña, A.; Zunzunegui, S.; et al.(2008). ATPase Activity and Oligomeric State of TrwK, the VirB4 Homologue of the Plasmid R388 Type IV Secretion System.Journal of bacteriology, 190(15): 5472-9;Peña, A.; Ripoll-Rozada, J.; Zunzunegui, S.; et al.(2011). Autoinhibitory Regulation of TrwK, an Essential VirB4 ATPase in Type IV Secretion Systems.The journal of biological chemistry, 286(19): 17376-82。
1700264485
1700264486 VIII TrwB与TrwK可以混用参见:Waksman, G.(2019). From conjugation to T4S systems in Gram‐negative bacteria: a mechanistic biology perspective.EMBO Reports, 20(2): e47012; Christie, P.(2017). Structural biology: Loading T4SS sub strates.Nature microbiology, 2(9): 17125。
1700264487
1700264488 IX 古菌鞭毛参见:Wallden, K.; Rivera-Calzada, A.; Waksman, G.(2010). Type IV secretion systems: versatility and diversity in function.Cellular Microbiology, 12(9): 1203–12; Ghosh, A.; Albers, S. V.(2011). Assembly and function of the archaeal flagellum.Biochemical society transactions, 39(1):64‐69; Ng, S. Y. M.; Chaban, B.; Jarrell, K. F.(2006). Archaeal flagella,bacterial flagella and type IV pili: a comparison of genes and posttranslational modifications.Journal of molecular microbiologyand biotechnology, 11(3–5): 167–91; Thomas, N. A.; Bardy, S. L.; Jarrell, K. F.(2001). The archaeal flagellum: a diferent kind of prokaryotic motility structure,FEMS microbiology reviews, 25(2): 147–174.
1700264489
[ 上一页 ]  [ :1.70026444e+09 ]  [ 下一页 ]