打字猴:1.700271726e+09
1700271726 你很熟悉的身体,其实是一个由人类细胞和非人类细胞的混合物组成的生态系统。我们自身有30万亿左右的细胞,但生活在我们身上和我们体内的细菌、古细菌、真菌和单细胞真核生物等不同群落的细胞总量远远超过这个数字。许多人还携带着比它们更大的动物,包括各种肠道蠕虫,生活在我们皮肤上并在我们的毛囊中产卵的八条腿的小螨虫。在这些与我们亲密无间的非人类同伴中,有很多都严重依赖我们的细胞和身体,但我们也依赖其中的一些。比如,内脏中的细菌会产生某些我们自身的细胞无法制造的氨基酸或维生素。
1700271727
1700271728 我们也不应该忘记,我们吃的每一口食物都是由其他生物体制造的。甚至有许多微生物,比如我研究的酵母菌,也完全依赖于通常由其他生物体制造的分子。比如那些包含葡萄糖和氨的分子,这些成分是制造含碳和氮的大分子所必需的。
1700271729
1700271730 植物似乎更加独立。它们可以吸收空气中的二氧化碳、地里的水,并利用太阳能来合成它们需要的许多更加复杂的分子,包括碳基聚合物。但即便是植物,也要依赖在根部或根部附近发现的细菌,从空气中捕捉氮。没有那些细菌,植物就不能制造构成生命的大分子。事实上,据我们目前所知,没有任何一种真核生物能够独自办成这件事。这就意味着,没有任何一种已知的动物、植物或真菌物种能够完全从零开始、赤手空拳地完成产生自身细胞的化学过程。
1700271731
1700271732 因此,要说真正独立的生命体——堪称完全独立,能无牵无绊地自由生活的——恐怕就是那些乍一眼看起来相当原始的生命形式了。其中包括微型蓝藻,通常被称为蓝绿藻,它们既能进行光合作用,又能自己捕获氮;还有古细菌,它们能从海底火山的热液喷口获取所需的能量和化学原料。这太令人震惊了:这些相对简单的生物不仅比人类生存的时间长得多,还比我们更加自立。
1700271733
1700271734 不同生命形式间的深度相互依存也反映在我们细胞的基本构成中。产生我们身体所需能量的线粒体原本是完全独立的细菌,它们掌握了制造ATP的能力。但在15亿年前,命运发生了一些意外的转折,有些线粒体细菌住进了另一种类型的细胞内。随着时间的推移,宿主细胞变得极其依赖这位入驻的细菌客人所制造的ATP,以至于让线粒体成了永久住客,成为细胞内的固定装置。这种互利关系得以巩固,很可能标志着整个真核生物系的开始。有了可靠的能量供应来源,真核生物的细胞就拥有了变得更大、更复杂的能力。反过来,这又促成了动物、植物和真菌演化出今天这般繁茂的多样性。
1700271735
1700271736 这一切都表明,生物体有一个分级的渐变光谱,从完全依赖他者的病毒,到更为自给自足的蓝藻、古细菌和其他众多植物。我坚持认为这些不同的形态都是有生命的,因为它们都是自我导向的有形实体,可以通过自然选择来进化,虽然它们也在不同程度上依赖于其他生物体。
1700271737
1700271738 从这种更广泛的生命观出发,我们看待生命世界的眼光也会变得更丰富。地球上的生命都从属于一个单一的、巨大的、相互关联的生态系统,其中包含了所有生物。这种基本的关联不仅来自生命体之间相互依存的深刻关系,还源于一个事实:追根溯源,所有生命体都有一些共同的进化根源,因而在基因层面相互关联。长久以来,生态学家一直很赞成这种深层关联、相互关联的生命观。这个观点最早源于19世纪初的探险家、自然学家亚历山大·冯·洪堡的思想,他认为所有生命都被一个互相连接的网络关联在一起。这种相互关联性是生命的核心,虽然这么说可能让人意外,但应该能让我们有充分的理由停下来,更深入地思考人类活动对生态世界里的其他生命体造成了怎样重大的影响。
1700271739
1700271740 生命之树分杈繁密,生活在不同分支上的生物体的种类之多,令人震惊。但是,即便是这样丰富的多样性,在更重大、更基本的相似性面前也会逊色几分。作为化学、物理和信息机器,所有生物体运作的基本细节是相同的。比如,生物体都用相同的小分子ATP作为能量货币;都依赖DNA、RNA和蛋白质之间的基本关系;都使用核糖体来制造蛋白质。弗朗西斯·克里克认为,从DNA到RNA再到蛋白质的信息流是最根本的生命特性,所以,他把这种关系称作分子生物学的“中心法则”。后来,有人指出了一些法则外的小特例,但克里克的核心观点依然屹立不倒。
1700271741
1700271742 所有生命的化学基础中的这些深刻共性,指向了一个令人瞩目的结论:如今地球上的生命只发生了一次。如果不同的生命形态各自独立地出现了好几次,并存活下来,那么,它们的后代能以如此相似的方式进行基本运作的可能性微乎其微。
1700271743
1700271744 如果所有的生命都栖居于同一棵巨大的生命之树,那么,这棵大树是从什么样的种子生长出来的呢?不知何故,在很久很久以前的某个地方,无生命的化学物质从无序状态排列成有序组织,以使它们延续,自我复制,并最终获得最重要的通过自然选择进化的能力。但这个故事,也就是我们人类的故事,到底是怎么开始的呢?
1700271745
1700271746 地球形成于45亿多年前,太阳系诞生之初。在最初的5亿年左右,地球表面特别热,极不稳定,不具备让我们所知的生命出现的条件。目前发现的最古老的生物化石可以确定是存活于35亿年前。这就意味着,生命的出现是在那几亿年中发生的。这个时间段非常漫长,并不是我们的大脑能轻易想象和理解的,但相对于地球上生命的历史总长,几亿年只是一小段时间。在弗朗西斯·克里克看来,在现有的时间总长内,生命似乎根本不可能在地球上从无到有。所以,他提出生命肯定是在宇宙的其他地方出现的,被以部分或以完整的形态送到了地球。但这更像是逃避,而非回答生命如何从微不足道的起点开始出现这一关键问题。今天,我们可以对这个故事做出一番能让人信服的描述,哪怕目前还无法全部得到证实。
1700271747
1700271748 最古老的化石看起来和今天的一些细菌非常相似。这说明当时的生命形态可能已经相当完备,有被细胞膜包裹的细胞,有基于DNA的遗传系统,有基于蛋白质的新陈代谢。
1700271749
1700271750 但最先出现的是什么呢?以DNA为基础的基因复制?以蛋白质为基础的新陈代谢?还是将细胞封闭起来的细胞膜?在今天的生物体中,这些小系统形成了一个相互依存的大系统,并且必须作为一个整体才能正常工作。储存在DNA中的基因只有在蛋白质酶的协助下才能自我复制。但是,蛋白质酶必须根据DNA中的信息指令来构建。怎么能撇开一个去谈另一个呢?还有一个事实是:基因和新陈代谢都依赖于细胞外膜把必要的化学物质聚集在细胞内,捕捉能量,并保护它们不受外界环境影响。但我们知道,今天的活细胞都是用基因和酶来构建它们复杂的膜的。基因、蛋白质和细胞膜组成关键的三位一体,所以很难想象其中的任何一个怎么单独出现。只要你拿走一个元素,整个系统就会迅速崩溃。
1700271751
1700271752 在这三者中,解释细胞膜的形成可能是最容易的。我们知道,构成细胞膜的那种脂质分子可以通过自发的化学反应来形成,这些反应涉及的物质和条件在年轻的地球上应该已经存在。当科学家们将这些脂质放入水中后,它们会有一些让人意想不到的表现:它们会自发地组合成由膜封闭的中空球体,球体的大小和形状与一些细菌细胞差不多。
1700271753
1700271754 膜封闭实体可以自发形成,如果这套机制足以采信,那么,就剩下DNA基因和蛋白质谁先来的问题了。针对这个特殊的“先有鸡还是先有蛋”的问题,科学家们找到的最佳答案是:没有先后!反倒是DNA的化学表亲RNA可能最先出现。
1700271755
1700271756 和DNA一样,RNA分子也可以储存信息。它们也可以被复制,复制过程中的错误也会导致变异。这意味着RNA可以作为一种能进化的遗传性分子运作。直到今天,基于RNA的病毒仍然如此行事。RNA分子的另一个关键特性是它们可以折叠,形成更复杂的三维结构,可以作为酶发挥作用。基于RNA的酶完全没有蛋白质酶那么复杂,也没那么多功能,但它们可以催化某些化学反应。比如,对如今的核糖体的功能至关重要的几种酶就是由RNA制成的。如果将RNA的这两种特性结合起来,也许能够产生既能作为基因又能作为酶的RNA分子:把遗传系统和简单的新陈代谢打包在一个袋子里。这就等同于有了一个能够自我维持、以RNA为基础的生命体。
1700271757
1700271758 一些研究人员认为,这些RNA生命体最早可能形成于深海热液喷口周围的岩石中。岩石中的微小孔隙可能提供了一个保护它们的环境,与此同时,从地壳中沸腾而出的火山活动提供了稳定的能量和化学原料。这种情况下,制造RNA聚合物所需的核苷酸有可能通过更简单的分子组装,完成从无到有的过程。起初,嵌在岩石中的金属原子可能起到了化学催化剂的作用,使化学反应无须生物酶的帮助就能进行。最终,经过几千年的试错和试对,这一过程可能最终催生出了由RNA构成的机体,这些机体是有生命的,能自我维持和自我复制,并且,在未来的某个时候,它们可能会被纳入膜封闭实体中。那应当算是生命出现的漫长道路中的第一个里程碑事件:第一批真正的细胞出现了。
1700271759
1700271760 我给你们描述的这番演变看似真实可信,但请记住,这也是高度猜测性的结论。第一批生命形态没有留下任何痕迹,所以我们很难得知生命之初发生了什么,甚至很难确定35亿多年前的地球本身到底处于什么状态。
1700271761
1700271762 不过,一旦第一批细胞成功形成,接下来的事情就比较容易推想了。首先,单细胞微生物会在世界范围内蔓延,逐步在海洋、陆地和空气中扎根。然后,20多亿年过去了,体形更大、结构更复杂的真核生物加入了它们的行列,但在很长一段时间内,这些真核生物仍然是单细胞生物。真正的多细胞真核生物的出现要晚得多,还得再过十几亿年。如此推算便可知:多细胞生物在地球上存在了大约6亿年,仅占生命历史总长的六分之一。然而,就是在这段时间里,多细胞生物衍生出了我们周围目力所及范围内形体最大的所有生命形态,包括高耸的森林、蚁群、巨大的地下真菌网络、非洲大草原上的哺乳动物群,以及距今年代最近的现代人类。
1700271763
1700271764 所有这些都是通过盲目的、未经引导但又极具创造性的自然选择进化过程发生的。但是,在思考生命体的诸多成就时,我们应该记住,只有当一个种群中的某些成员无法生存和繁殖时,进化才能有效地进行。因此,尽管生命作为一个整体已自证是顽强的、持久的且具有高度的适应能力,但单个生命体的寿命是有限的,当环境发生变化时,其适应能力是很有限的。这就是自然选择出手的时机:消灭旧的秩序,如果种群中存在更合适的变种,就为新秩序铺路。如此看来,死亡是生命的必由之路。
1700271765
1700271766 自然选择的无情筛选创造了许多意料之外的东西。最特别的产物之一就是人脑。就目前所知,没有其他生物像我们这样能意识到自身的存在。有自我意识的人类大脑一定是进化出来的——至少有一部分原因是进化——为了让我们在世界发生变化时有更多的余地来调整自身的行为。和蝴蝶,甚或其他所有已知的生物体不同的是,我们可以谨慎选择并反思自身行为的动因。
1700271767
1700271768 与其他生物系统一样,大脑的运作也基于相同的化学和物理过程。然而,不知为何,从同样相对简单的分子和众所周知的动能中,竟然涌现出了我们思考、辩论、想象、创造和受苦的能力。这一切是如何从我们大脑的湿化学中产生的?这给我们带来了一系列极具挑战性的问题。
1700271769
1700271770 众所周知,我们的神经系统的基础是数十亿个神经细胞(神经元)间极其复杂的相互作用,这些神经元会在相互之间创建数万亿个连接,被称为突触。这些深不可测、精妙繁复、持续变化、互相连通的神经元网络共同构建了信息通路,传输和处理丰富的电子信息流。
1700271771
1700271772 生物学中常见的研究方法是从较为简单的“模型”生物入手,通过研究像蠕虫、苍蝇和小鼠之类的生物,我们可以了解到大部分情况。对于这些神经系统如何通过感官从环境中收集信息,我们了解到的情况已经相当多了。研究人员已经做了全面细致的工作,追踪视觉、听觉、触觉、嗅觉和味觉信号在神经系统中的移动,还绘制了一些能够形成记忆、产生情绪反应和造成肌肉舒张等输出行为的神经元连接图。
1700271773
1700271774 这些工作都很重要,但只是个开始。对于理解数十亿个神经元之间的相互作用,是如何结合并产生抽象思维、自我意识和看起来的自由意志的,我们还只是在起跑线上。为这些问题找到合情合理的答案,可能要耗费21世纪这一百年,甚至可能需要更久。而且,我相信我们不能仅仅依靠传统的自然科学方法来达到这个目的。我们将不得不吸取心理学、哲学和更广泛意义上的人文科学带来的各种真知灼见。计算机科学也会很有助益。当今最强大的“人工智能”计算机程序就是用高度简化的形式,为了模拟生命体的神经网络处理信息的方式而构建的。
1700271775
[ 上一页 ]  [ :1.700271726e+09 ]  [ 下一页 ]