1700433650
1700433651
不要低估分析专家创造力的重要性。创造力在那些自称为分析专家的人身上并不常见。以创造力作为评判标准会筛选掉很多人。如果给你10个人,有两三个人能满足要求就不错了。有的公司会使用性格测试,有的会让候选人解决随机出现的问题来评判他们是否有创造力。我评判一个人是否有创造力的方法是,让他自己讲在遇到“@#%$&*!!!”这类分析问题时他是怎么做的。有创造力的人讲出来的故事往往很动听,而没有创造力的分析专家只会把自己解决问题的步骤简单地罗列出来。
1700433652
1700433653
1.干净的数据只存在于教科书中
1700433654
1700433655
干净的数据真的值得在本节中用单独的一部分讲解吗?我们在这里讲干净的数据是因为,分析专家的数据处理方式必须得有创造性。数据永远不会像我们想的和要求的那样干净,数据永远都会有缺陷、不完整和错误,数据还会违背分析方案中的一些假设条件。
1700433656
1700433657
我们在学校上学的时候,都认为数据应该是准确的、干净的、完整的。如果有的数据点不是这样,那我们就会弄清楚原因,然后调整数据。每一个在校生都拥有这个疯狂的想法,教科书的例子反映了他们以后将在商业世界中遇到的情况。但是,商业肯定不是按照教科书的方法在运转。数据永远不可能跟课堂案例一样简单。例如,性别编码除了“M”、“F”、“U”以外,还可能由于某些未知原因而变成“H”。同样,客户也许会在杂货商店购买10000000美元的商品。还有,虽然产品将被卖出,但其产品代码却并不存在。
1700433658
1700433659
这些情况会产生严重的问题。换句话说,当数据并不是我们想要的和我们所要求的,我们要怎么办?我们是不是应该忽视那些没有真正发生购买行为的消费者?我们是不是要把“H”变成“U”?产品代码能否被正确识别?弄清楚如何才能最有效地利用分析数据是任何分析工作中最困难的部分,这需要有一定的创造性。如果分析专家发现数据不完整,不能充分地解答我们期待的问题,就应该发挥创造力找到方法让不可能变成可能。在这个过程中,我们可能要弃用其中某部分数据,或者修正一部分数据。我们可以从快速解决问题并取得小小的胜利开始,然后在此基础上不断完善已有的成果。
1700433660
1700433661
追求完善,而非完美
1700433662
1700433663
解决业务问题时,我们追求的目标应该是不断完善,而非追求完美,理解这一点很重要。如果只要把数据弄得干净一点,就能获得一些工作成果和提升机会,这该有多好。优秀的分析专家关心的是如何完善工作成果,如何从不标准的数据中努力获得他们想要的结果。分析结果本身可能并不完美,但它们足以支撑决策,我们大可以此为基础不断地改进策略,这样就已经很好了。
1700433664
1700433665
会员卡分析就是这样一个领域,它的数据永远也会不完美。即使是最忠实的客户也不会记得每次都使用他们的会员卡,这就意味着每位客户的“整体”消费状况都是不完整的。然而,事情还可以补救。真正优质的客户大部分时间还是记得使用他们的会员卡的。对于理解客户消费,这些数据已经够用。事实上,缺少一些数据并不意味着分析就做不了。当然,有的客户可能会因为信息不完整而被略微低估,但我们根据这些数据其实已经足以做出决策了。优秀的分析专家肯定明白这一点。
1700433666
1700433667
2.足够干净的数据
1700433668
1700433669
优秀的分析专家都会关心的一个重要问题是,无论数据有多脏,或者多大程度上违背了假设条件,数据是否还足够干净。依靠这些数据我们能得到让人信服的结果吗?我们能通过这些尚可信赖的数据,得到可以使我们真正有所收益的结果吗?如果答案是肯定的,分析专家们肯定会奋力尝试。数据根本不需要过于完美,只要足以支撑我们进行决策就可以了。优秀的分析专家善于创造性地找到验证数据是否干净的方法。
1700433670
1700433671
作为一个广泛使用但错误很多的数据源,家庭人口统计已经有数十年历史了。一般来说,人口统计数据供应商都能获得准确的统计信息。但是,我们还是要假设在数据编辑过程中,会遇到家庭数据不准确的情况,但它们并不会妨碍数据的有效性。即使有些家庭的数据有问题,分析所得的粗粒度的模式和发展趋势也是可信的。即使数据不完美,使用这些数据对营销人员来说也是非常有用的。总是有创造性的办法来解决这些已经存在的偏差和问题。如果仅仅是因为数据错误而忽略数据,那许多有价值的分析都会不复存在。
1700433672
1700433673
优秀的分析专家会在企业环境中想方设法地让内部数据源产生商业价值。这取决于我们如何看待这件事情,我们可以认为瓶子里面装了半瓶水,也可以觉得瓶子里面空了半瓶水。正如第1章所述,这种观点对处理大数据也是适用的。大数据往往不够干净,经常会包含需要过滤掉的冗余信息。
1700433674
1700433676
8.4.3 商业头脑
1700433677
1700433678
优秀的分析专家既能理解他们使用的业务模型,也能理解如何才能有效地使用分析手段解决实际的业务问题。优秀的分析专家既能从业务角度看待重要的业务指标并分析产出,也能从技术角度看待这些指标,他们会花时间努力达到这样的认识高度。不管我们的商业头脑怎么样,我们都得有兴趣,并投入足够的关注和精力才能把分析工作做好。如果我们对理解业务本身根本没有任何兴趣和意愿,我们就不可能变成优秀的分析专家。
1700433679
1700433680
请注意,商业头脑和行业经验指的并不是同一件事。行业经验只是一组事实和知识的集合,商业头脑是一组软技能的集合。如果某个分析专家很有商业头脑,那么他在转行的时候一般不会有什么问题。就像前面Mark那样优秀的分析专家,他们可以把他们的商业头脑运用在其他场合和问题上。我们在面试分析专家的时候,要问清楚他们在以往的项目中是如何进行决策的。如果候选人有商业头脑,他们就会提到自己的一些真实的业务和技术思考。你们之间的讨论肯定会或多或少涉及对解决业务问题方面的考虑。没有商业头脑的分析专家会把精力主要放在技术需求和条件假设上面。
1700433681
1700433682
奇异的混合体
1700433683
1700433684
优秀的分析专家都是奇异的混合体。在工作中,他们有时会像IT人员那样做纯技术性的工作,而有时会像真正的商人那样动用商业头脑。跨界思考问题很困难,这也就是为什么成为一个优秀的分析专家会如此困难。
1700433685
1700433686
1.适当的粒度
1700433687
1700433688
我们所说的商业头脑,其中一方面内容指的是怎样把分析结果和决策粒度联系起来。什么意思呢?比方说,现在有一位商人要求一名分析专家来提升某次市场营销活动的效果,他规定只要构造出来的模型比目前的方法好2个百分点,就算成功。这就是给分析专家设定的要跨越的标杆。他们要对自己有信心,相信自己的方法的效果至少要比当前的方法好2个百分点。
1700433689
1700433690
他们会在演示结果时说自己的模型比基准效果好5.32526个百分点吗?应该不会。如果误差范围是加减2个百分点他们肯定不会这么说。如果误差范围是加减2个百分点,还有谁会在乎点估计是5.32526?这个时候百分位纯粹就是干扰位。我们要表达的关键点是,加减2个百分点,结果会在5个百分点上再提升一点;最坏情况也是3个百分点,这样模型才能肯定比2个百分点的基准效果要好。这就是所有商业人士关心的内容。优秀的分析专家不会让业务团队被更多的细节困扰,他们会采取能够让数据增值的作法。他们会用自己的商业头脑来判断需要提供哪些内容,以及如何定位分析结果。
1700433691
1700433692
另一个例子与需求预测有关。几年前,一家厂商曾宣称它的需求预测结果比竞争对手准确得多。这家厂商表示在一般情况下,使用者手头只需要额外预备3个单位,而竞争对手推荐需要预备4个单位。项目投资人听到这个当然很高兴,但问了一个问题后,他们就不再那么兴奋了。投资人问的是,他们的最小采购单位是6,现在该怎样来判断两家厂商预测的有效性呢?最小采购单位是6,任何粒度更细的措施都是徒劳的。如果分析专家有很好的商业头脑,并以正确的方式解决问题,就会提前把这些约束条件识别出来作为前期的铺垫。
1700433693
1700433694
2.关注重要的事情
1700433695
1700433696
实际数据往往会违背前期的假设条件。例如,很多模型都会假设分布是正态的。从理论出发,我们要考虑这些假设条件会在何时被破坏。但从实际出发,如果两个变量之间有很强的作用关系,不管使用何种方法,这种作用关系都会以某种形式显现出来。这是不是说明在先前的假设被严重违背时,虽然我们选择的建模方法不同,但参数估计和影响预测却仍然是相同的?当然不是。但这并不意味着即使违背了先前的假设条件,并使用了不同的方法,起重要作用的因素就会被发现其重要性。如果粒度本身不需要过细,那粗略的作法就很好。
1700433697
1700433698
是否存在这种场景,使用线性回归法证明两个变量之间没有任何关系,但使用U型曲线却可以完美地阐释变量之间的关系,从而违背了原先的线性假设条件?确实存在这种场景。关键在于这不是不可能的,变量关系在多数情况下还是能以某种方式识别出来的。如果分析项目的甲方要的是二值决策,数据和模型只需要能准确地给出这种二值决策就可以了。优秀的分析专家知道何时要按照需求上调或者下调结果的精度。图8-1就是这样的一个例子,图中有些数据很明显违背了线性关系的假设条件。但是,如果我们需要的是理解两个变量之间共同变化的趋势,那回归直线就能有效地反映出这种关系的本质。
1700433699
[
上一页 ]
[ :1.70043365e+09 ]
[
下一页 ]