1700433773
聚类分析是一种模型分群算法,下面我们来看一个聚类分析的例子。还没有哪种简单的并被大家广泛认可的度量方法,可以像聚类分析这样方便地找出正确的答案。分群建模方法真的是一门艺术。经常使用分群模型的分析专家都有自己的搜索原则。比如我使用这种模型的时候就有自己的操作流程。我知道自己要往哪儿去,我要找的是哪种模式。但是,我很难给别人讲清楚这一点。同样,其他人也无法向我解释清楚他们的方法。每个分析专家都有自己进行分群模型分析方法,这些方法对于他们来说就是艺术。
1700433774
1700433775
信任对于分析专家的工作至关重要,这个观点正在逐渐被人们所接受。面对需要很多艺术处理的分析数据,信任就变得更加重要了。如果没有什么指标可以清楚地告诉我们要做何选择,业务投资方就必须得相信分析专家的直觉,相信他们的艺术处理方法。获得这种程度的信任需要跨越相当大的一步,需要很长时间才能建立起这种信任关系。优秀的分析专家会花时间来建立这种信任,他们愿意成为业务伙伴可以信赖的顾问。
1700433776
1700433777
以艺术家身份出现的分析专家
1700433778
1700433779
不同的画家面对同一处风景,他们可以使用完全不同的技法但都画出了引人入胜的作品。不同的分析专家也可以使用完全不同的方法来做分析,这就是分析本身的艺术性。有些算法本身没有多少艺术处理的余地,但保持艺术的态度肯定可以更好地支撑决策、定义问题、设计分析方法,以及根据手头数据得到解决方案。优秀的分析专家既是艺术家又是科学家。
1700433780
1700433781
最近,分析圈子里面最火的话题是公司中数据科学家所扮演的角色。正如本章之前讲述的那样,数据科学家做的事情与高级分析专家做的事情本质上并没有太多不同。传统意义上的分析专家如果想要变成数据科学家,需要掌握类似MapReduce的这类工具,但学习新工具对于分析专家来说并不算是新事物。数据科学家的工具箱里有新的工具吗?答案是肯定的。他们会有完全不同的分析意图吗?答案是否定的。
1700433782
1700433783
和数据科学家这个概念同样重要的是,我们要把分析专家看成是使用数据的艺术家。他们是要深入挖掘公司数据的人,他们也要用优雅的有吸引力的方法来创造性地利用数据解决问题。就像画家可以挥洒颜料作画来装饰墙面一样,数据艺术家们也可以把数据变成业务问题的解决方案。
1700433784
1700433785
优秀的分析专家既是艺术家又是科学家。同时拥有两种本领,当然比只拥护有一种技能要强。如果你怀疑这种说法,问问你认识的那些优秀的分析专家,他们的技能和兴趣是什么。你会惊讶地发现他们还有音乐、美术和其他需要创造力的领域的才能,而我们以前并不知道他们还有这些才能。
1700433786
1700433788
8.5 分析认证有意义吗,还是干扰视听的噪音
1700433789
1700433790
近来关于开发分析专家认证项目的讨论多了起来。这类认证从概念上讲和注册会计师认证(CPA)以及理财规划师认证(CFP)没有什么不同。分析专家这种职业有必要发起认证项目,好让用人单位可以评估哪些人满足了最低用人门槛吗?
1700433791
1700433792
我曾经读到过有一些组织想要开发这类认证项目,也参与讨论过一些很酷的想法。最大的挑战在于要确切地弄清楚需要测试的内容。如若想要识别优秀的分析专家,我们前面已经很细致地讲过,技术敏感度很容易测试,但单纯参考关于技术的评价就是一种赌注。判断一个人是否会写程序或者能够理解线性回归方法背后的假设,这些并不困难。但是,创造力要怎么测试?直觉要怎么测试?商业头脑要怎么测试?演讲能力和沟通技巧要怎么测试?分析场景下的这些特质要怎么测试?这些方面要困难得多。
1700433793
1700433794
让分析专家展示他们有能力也有意愿通过类似的考试,当然也不错。问题是任何从成本和有效性方面制订的认证都会主要侧重于对技术能力的考察。虽然这类考试会变成赌注筹码,但至少能证明一个人是否有技术能力,以及是否有足够的意愿去考取认证证书。但我们在这些技术能力的基础上,还得弄清楚他们是否还具备了我们所需要的其他能力,例如创造力。以这种方式来考虑问题,认证项目就是好事情。如果只是作为一种指标或者标准,认证项目将无法满足我们的需要。
1700433795
1700433796
分析圈子将会广泛采用认证项目吗?如果制订认证项目的各类机构都能给市场带来一些新鲜气息,久而久之肯定会有一两个赢家冒出来。但是,不管考试本身组织得有多好,用人单位也不应该单纯参考技术认证来进行招聘。根据我先前关于工作需求清单的讨论,用人单位甚至并不想用认证作为强制性要求。但只要认证考试运用得当,它们还是有价值的。
1700433797
1700433798
说到这里,谁是优秀的分析专家应该很明白了。他们“拥有”数据,他们知道如何使用这些数据,他们也知道如何组织这些数据,他们还能发现数据中的模式。优秀的分析专家能够“解决”业务问题,他们了解业务人员需求的重要性,也了解为什么需要解决这些问题,他们了解现实约束,了解如何解答业务人员提出的问题。优秀的分析专家“了解”如何正确地描述问题,收入重要,还是利润重要?问题真正的关键点在哪里,为什么要这么说?分析应该怎样设计?最后,优秀的分析专家“知道”不能只把自己当成科学家,业内最好的分析专家毫无疑问也是艺术家!
1700433799
1700433801
8.6 本章小结
1700433802
1700433803
以下是本章的重点内容。
1700433804
1700433805
■ 我们在招聘分析专家时,要以技术和教育背景作为起点,而不是最终要评判标准。
1700433806
1700433807
■ 我们要招聘不同行业背景的分析专家,要借鉴其他行业的游戏规则。
1700433808
1700433809
■ 评判优秀的分析专家时,承诺、创造力、商业头脑、演讲能力与沟通技巧、直觉都是关键因素,但这些因素往往会被人们认为并不重要。
1700433810
1700433811
■ 只有一小部分具备技术能力的人,能够具备前面描述的那些非技术要素。
1700433812
1700433813
■ 优秀的分析专家关心的是如何完善业务,而非使之完美。知道分析结果何时已经足以支撑业务决策是非常重要的,然后着手解决下一个问题。
1700433814
1700433815
■ 优秀的分析专家会把所需的数据准确度和决策粒度完美地结合起来。不完美的数据仍然可以有效地回答许多问题。
1700433816
1700433817
■ 如今的离岸分析太过关注技术技能。我们要需要那些优秀的本地分析专家一起协同工作才行。
1700433818
1700433819
■ 虽然说得到可靠的结果很重要,但项目成败至少有50%的因素取决于分析专家的演讲,以及他们如何把分析结果传达给不懂技术的项目投资方。
1700433820
1700433821
■ 很多机构都在开发分析认证项目。时间会告诉我们认证项目会不会被市场接受,认证只是评估候选人的起点。
1700433822
[
上一页 ]
[ :1.700433773e+09 ]
[
下一页 ]