打字猴:1.70091811e+09
1700918110
1700918111 图6-6 水缸里的水波(左图)和太阳表面的声波(右图)。
1700918112
1700918113
1700918114
1700918115
1700918116 图6-7 假设我们向一道拥有两条竖直狭缝的屏障发射粒子(比如,用激光枪发射电子或光子),根据经典力学的预测,这些粒子穿过狭缝,打在屏障后面的探测器上,将呈现出与狭缝相对应的两根竖条。然而,根据量子力学的预测,粒子具有波动性,所以每个粒子都将以“量子叠加”(quantum superposition)的方式同时穿过两条狭缝,并与自身产生干涉,然后在探测器上形成与图6-6相类似的那种干涉模式。这个著名的双缝实验证明了量子力学是正确的:你会观测到,粒子组成了一系列平行的竖条,而并非仅有两条。
1700918117
1700918118 德布罗意的论文引起了轩然大波。1925年11月,薛定谔在苏黎世召开了一场与之有关的研讨会。当他讲完后,彼得·德拜(Peter Debye)说:“你讲了半天关于波动的事情,可是,波动方程在哪里呢?”于是,薛定谔向这个方向继续钻研,发表了他著名的波动方程(见图6-4),这个波动方程成了打开现代物理学的金钥匙。大约在同一时间,马克斯·玻恩(Max Born)、帕斯奎尔·乔丹(Pasqual Jordan)和维尔纳·海森堡开始用一种被称为“矩阵”的数表来解决同样的问题。有了这个强大的数学工具做基础,量子理论开始了爆发式的进展。在短短几年内,成功解决了一大批从前无法解释的观测现象,包括复杂原子的光谱和化学反应中的各种数字等。量子物理学最终改变了我们的生活:激光、晶体管、集成电路、计算机和手机等纷至沓来。量子力学的成功之处还在于,它衍生出了许多分支,比如量子场论,为寻找暗物质粒子等现代前沿研究打下了坚实的基础。
1700918119
1700918120 好的科学理论有什么特点呢?我认为,其中一个特点叫“数据压缩”(data compression),即能用极少的信息来解释很多问题。一个好的科学理论,你从中得到的东西远多于你为之付出的努力。例如,我试着用标准的数据压缩软件把本章的草稿文档压缩了一下。软件根据我字里行间的规律和模式,将文档压缩到了1/3那么大。让我们把它和量子力学进行一下对比吧。我从网上下载了一个列表,包含超过20 000个光谱线,是世界各地的实验室经过艰苦的工作测定出来的。根据这些数字中所找出的规律和模式,薛定谔方程能将这些数据压缩到仅剩3个数字,分别是:所谓的精细结构常数α≈1/137.036(它赋予了电磁相互作用的强度)、一个大小为1 836.15的数字(代表质子质量是电子质量的多少倍)以及氢元素的轨道频率[26]。这相当于把整本书压缩为短短的一句话!
1700918121
1700918122 我将薛定谔视为我的物理学英雄之一。当我还在慕尼黑的马克斯·普朗克物理学研究所做博士后研究时,实验室的复印机每次都要花很长时间才能启动。在等待的时间里,我通常会从架子上抽出一本经典书籍来打发时间。有一次,我抽出了一本1926年的《物理学年鉴》,惊讶地发现,薛定谔发表于1926年的4篇论文几乎涵盖了我在研究生量子力学课堂上所学到的所有知识。我敬仰他,并不仅仅因为他很聪明,还因为他是一位自由的思想家——他敢于质疑权威,善于独立思考,并追寻自己认为正确的事情。当他得到柏林马克斯·普朗克研究所的教授职位(世界上最德高望重的职位之一)后,他放弃了这个机会,因为他无法忍受纳粹迫害他的犹太同事。接着,他又拒绝了普林斯顿大学抛出的橄榄枝,因为他们无法接受他离经叛道的家庭(他与两名女性同居在一起,并育有一个非婚生的孩子)。1996年,当我在奥地利滑雪时,曾去瞻仰过他的坟墓。我发现,他的自由思想在他的家乡也不怎么吃香——你可以看一下我拍的照片(见图6-4),那是阿尔卑巴赫(Alpbach)的一个小城镇,这位最有名的镇民被埋葬在一个十分简朴的坟墓里,并且位于公墓的边缘地带……
1700918123
1700918124 量子怪诞性
1700918125
1700918126 那么,这一切都意味着什么呢?薛定谔方程描述的这些波,究竟是什么东西?量子力学的谜语,直到今天也没有解开,人们依旧对此争论不休。
1700918127
1700918128 当物理学家用数学来描述某样东西时,我们通常需要分别描述两件事:
1700918129
1700918130 ●它在某一特定时刻所处的状态。
1700918131
1700918132 ●用来描述这个状态如何随时间而变化的方程。
1700918133
1700918134 比如,为了描述水星绕太阳旋转的轨道,牛顿用了6个数字来描述它的状态:3个数字用来描述水星中心点的位置(类似x、y和z坐标),另外3个用来描述3个方向上的速度[27]。对运动方程,他采用了牛顿定律:加速度由太阳对水星的万有引力决定,而万有引力与二者距离的平方成反比。
1700918135
1700918136 尼尔斯·玻尔在他的“太阳系”原子模型(见图6-5中图)中,引入了两个特殊轨道之间的量子跃迁,改变了上述第二部分的描述,但他保留了第一个部分。薛定谔则跨出了比玻尔更大、更彻底的一步,他连第一部分也改变了——他彻底摒弃了那个认为粒子必须具有精确位置和速度的观念!相反,他采用了一个崭新的“数学怪兽”来描述粒子的状态,这个怪兽就叫作“波函数”,记作Ψ,来描述粒子如何同时存在于不同的位置。图6-5右图展示了氢原子的电子位于n=3轨道时的波函数平方[28],也就是|Ψ|2;你可以看出,它并不存在于某一个特定的位置,而是分布在质子的各个方向,只不过在某些半径的概率大一些。在图6-5右图中,“电子云”在不同位置的强度相当于电子出现在这些地方的可能性。具体地说,如果你付诸实践来寻找电子,你会发现,波函数的平方就等于你在某处可能找到这个电子的概率。所以,一些物理学家喜欢把波函数看作是对“概率云”或“概率波”的描述。需要特别注意的是,你永远不可能找到一个粒子在某处的波函数等于零。如果你想在鸡尾酒会上伪装成一位量子物理学家,建议你一定要说一个词,那就是“叠加态”(superposition)——如果一个粒子同时位于此处和彼处,那它就处于此处和彼处的叠加态,它的波函数描述了关于这个叠加态的一切。
1700918137
1700918138 这种量子波与图6-6中所描述的那种经典波有着天壤之别。那种你可以在其中冲浪的经典波是由水组成的,波纹形成于水的表面。而氢原子中的“波”和“云”却不是水,甚至根本不是一种物质,那里只有一颗电子,只不过它的波函数像波浪一样起伏,向世界宣告它将如何出现在空间各处。
1700918139
1700918140 共识的崩塌
1700918141
1700918142 简而言之,薛定谔从两个方面改变了人们对世界的经典描述:
1700918143
1700918144 ●一个粒子的状态是由波函数来描述的,而不是位置和速度。
1700918145
1700918146 ● 这个状态随时间的改变是由薛定谔方程来描述的,而不是牛顿定律或爱因斯坦的定律。
1700918147
1700918148 人们把薛定谔的发现看作20世纪最伟大、最重要的成就,因为它深刻地变革了物理学和化学。但同时,它也让人们抓耳挠腮,困惑不已:如果一个物体竟然能同时出现在几个不同的地方,为什么我们从来没有观察到这个现象呢(喝醉时除外)?这个谜被称为“测量问题”(measurement problem,在物理学中,测量[measurement]和观察[observation]是同义词)。
1700918149
1700918150 在经过各方争议和讨论后,玻尔和海森堡想出了一个补救措施,被称为“哥本哈根解释”(Copenhagen interpretation),直到今天它依然出现在众多量子力学教科书上,受到大多数人的支持。这个解释最关键的一点是在上述第二条中加入了一个“后门”,假定薛定谔方程只在某些时候起作用,而是否起作用取决于是否存在观察者。具体而言就是说,如果某个物体没有被观测,那么其波函数的变化是符合薛定谔方程的。但是,如果它正在被观察,那它的波函数就会坍缩,这样,你就会观察到它只位于同一个地方,而不是同时位于许多地方。这个坍缩的过程是突然发生的,而且本质上具有随机性。与此同时,你观察到粒子位于某个特定位置的概率是由它波函数的平方决定的。这样,波函数坍缩就巧妙地逃脱了神经兮兮的叠加态,并能解释我们所熟知的、物体在同一时间只出现在同一个地方的经典世界(见图6-8)。表6-3总结了迄今为止我们所探讨过的量子概念以及它们之间的相互关系(希尔伯特空间和最后三个概念将在下一章里讲解)。
1700918151
1700918152
1700918153
1700918154
1700918155 图6-8 波函数Ψ摇摇欲坠。
1700918156
1700918157 表6-3 主要的量子力学概念总结
1700918158
1700918159
[ 上一页 ]  [ :1.70091811e+09 ]  [ 下一页 ]