1700926317
一闪一闪小星星,究竟何物现奇景。
1700926318
1700926319
宇宙中下一个最丰富的元素是氦。氢和氦在宇宙中占到绝大多数。这两种元素也是最小和最轻的元素,因此天文学家们面临这样一个事实,即宇宙主要是由小的原子而不是由大的原子构成的。这种不平衡的程度在以下的元素在宇宙中的丰度按原子序数的列表可以看得更清楚。这些值是基于当前的测量值,它们与20世纪30年代的估计值相去不远:
1700926320
1700926321
1700926322
1700926323
1700926324
换句话说,氢和氦约占宇宙中所有原子的99.9%。这两种最轻的元素是极其丰富的,而接下来的轻的或中等重量的一批原子则不太常见,最后,像金和铂这样的重原子则更加罕见。
1700926325
1700926326
科学家们开始奇怪为什么轻元素和重元素的宇宙丰度之间会有这么大的差异。永恒宇宙模型的支持者无法给出一个明确的答案;他们的退路是宇宙一直就是这样包含着目前这种比例的元素,而且永远不变。丰度的范围简单来说就是宇宙的固有属性。这是一个令人非常不满意的答案,但它有一定的自洽性。
1700926327
1700926328
然而,丰度的神秘性对于大爆炸的支持者来说则带来了更多的问题。如果宇宙从创生的那一刻起就开始进化,那么为什么它会进化出这样一种氢和氦,而不是黄金和白金的方式?是什么机制造成创生过程优先创造轻元素而不是重元素?无论是什么解释,大爆炸的支持者都必须找出它,并表明它与大爆炸模型是兼容的。任何合理的宇宙理论都必须准确地解释宇宙是如何形成的,否则就将被认为是失败。
1700926329
1700926330
解决这个问题需要采用一种完全不同于先前的宇宙研究方法。在过去,宇宙学家都将注意力集中在尺度非常大的事物上。例如,他们用广义相对论来研究宇宙,这个理论描述的是巨大的天体之间的引力作用。他们用巨型望远镜去观测非常遥远的巨大星系。但是,要解决宇宙丰度的问题,科学家们需要新的理论和新的设备来描述和探测非常非常小的对象。
1700926331
1700926332
在开始讲述大爆炸的这部分故事之前,我们需要先对原子的现代研究历史做一个简短的回顾。本节的余下部分讲述那些为原子物理学奠定了基础的物理学家们的故事。他们的工作能使大爆炸的支持者们来探讨宇宙中充满氢和氦的原因。
1700926333
1700926334
当代对原子的理解始于化学家和物理学家们对放射性现象的浓厚兴趣。放射性这一现象是在1896年被发现的。很明显,一些最重的原子,如铀,是有放射性的,这意味着它们能够以辐射形式自发地放出大量的能量。有一段时间,没有人能理解这种辐射到底是什么或是由什么造成的。
1700926335
1700926336
玛丽和皮埃尔·居里夫妇当时站在了放射性研究的前沿。他们发现了新的放射性元素,包括镭,它比铀的放射性要强100万倍。镭的放射性排放最终被它周围的物质所吸收,能量被转换成热能。事实上,1千克镭产生的能量足以在半小时内烧开1公升的水,更令人印象深刻的是,放射性的持续几乎有增无减——1千克镭每30分钟烧开1公升新鲜的水这种行为可以持续1000年。虽然比起炸药,镭释放能量的速度很慢,但它最终释放出的能量是同等重量的炸药的100万倍。
1700926337
1700926338
多年来,没有人完全理解放射性所带来的危险,大家以天真乐观的态度来看待像镭这样的物质。美国镭公司的萨宾·冯·佐赫茨基甚至预言,镭会被用作民用电源:“在你自己的房子里完全用镭来照明的时代无疑即将到来。漆在墙壁和天花板上的镭所发出的光,在色调上就像柔和的月光。”
1700926339
1700926340
居里夫妇都遭受到辐射损伤,但他们仍不遗余力地进行这项研究。经过多年与镭的接触,他们的笔记本变得带有很强的放射性,以至于今天它们仍必须存储在一个铅盒内。玛丽的双手经常沾满镭的尘埃,以至于她的手指在笔记本的纸上留下了看不见的放射性痕迹,笔记本夹着的照相胶片可以真实记录下她的指纹。玛丽最终死于白血病。
1700926341
1700926342
居里夫妇在他们狭小的巴黎实验室里以巨大的牺牲为代价,在许多方面让我们看清了在理解原子内部构造方面的巨大欠缺。科学家们似乎感到他们的知识倒退回去了——仅仅在几十年前,他们就声称要充分利用元素周期表来理解物质的这一建筑砖块。1869年,俄罗斯化学家德米特里·门捷列夫绘制了一张列出了从氢到铀的所有已知元素的图表。通过将周期表中不同元素的原子以不同的比例化合,就能够形成分子,并能够解释太阳之下、太阳之内和太阳之外的每一种物质。例如,两个氢原子和一个氧原子结合成一个水分子H2O,这仍是正确的,但居里夫妇表明,某些原子体内有强大的能量源,而元素周期表无法解释这一现象。没有人对原子深层次内到底发生了什么有可靠的线索。19世纪的科学家把原子想象为简单的球体,但要解释放射性,原子就必须有更复杂的结构。
1700926343
1700926344
1700926345
1700926346
1700926347
图67 元素周期表显示了所有化学元素——物质的基本单元。它们原本可以从最轻的到最重的排列成一行(1氢,2氦,3锂,4铍,等等),但这种表格式排列则显示得更为清楚。元素周期表将具有公共属性的元素放在一组。例如,最靠右边的列包含了所谓的惰性气体(氦,氖等),这些元素的原子很少与其他原子反应形成分子。不论周期表在帮助我们理解元素间相互反应时起着什么作用,它确实没有提供了解放射性的原因的任何线索。
1700926348
1700926349
被吸引到这个问题上来的一位物理学家是新西兰人——欧内斯特·卢瑟福。他备受他的同事和学生们的喜爱,但他也以粗暴专制而著称。他很容易发脾气,而且表现傲慢。例如,根据卢瑟福的观点,物理学是唯一重要的科学。他相信这门学科能够提供对宇宙的深刻和有意义的理解,而所有其他科学的全副精力只是用于单纯的测量和编目。他曾说过:“所有的科学要么是物理学要么就是集邮。”结果事与愿违,这种狭隘的评论使得诺贝尔奖委员会在1908年只是授予他化学奖。
1700926350
1700926351
1700926352
1700926353
1700926354
图68 这是卢瑟福在三十出头时拍摄的肖像。他很瞧不起化学家,而这在物理学家中并不少见。例如,当诺贝尔奖获得者物理学家沃尔夫冈·泡利的妻子离开他嫁给一个化学家后他很生气:“如果她找了一个斗牛士的话,我会理解,但一个普通的化学家……”
1700926355
1700926356
第二张照片显示的是一个更加成熟的卢瑟福与他的同事约翰·拉特克利夫在卡文迪什实验室。他们头上的标语“请小声说话”就是专门针对卢瑟福的,他喜欢可着嗓子唱“前进!基督徒的士兵们”这支歌,弄得实验室的敏感设备无法正常工作。
1700926357
1700926358
在20世纪初卢瑟福走上研究道路时,原子图像仅比19世纪人们想象的那种简单的、无结构的球稍许复杂一些。当时原子被认为含有两种成分:带正电荷的物质和带负电荷的物质。相反电荷的吸引就是为什么这些物质会被束缚在原子内的原因。后来,1904年,杰出剑桥物理学家J.J.汤姆孙提出了一种被称为葡萄干布丁的模型。在这个模型下,原子由一系列带负电的粒子镶嵌在一个带正电的生面团状的材料中组成,如图69所示。
1700926359
1700926360
1700926361
1700926362
1700926363
图69 这个截面展示了约瑟夫·汤姆孙的葡萄干布丁原子模型。其中每个原子都是由一系列带负电的粒子(葡萄干)镶嵌在一个带正电的生面团状的材料(布丁)中组成。轻的氢原子的一小团带正电的面团里只嵌有一个负电性的粒子,而重的金原子的带正电的面团较大,其中会嵌入许多带负电的粒子。
1700926364
1700926365
放射性的一种形式是α辐射。这种辐射似乎是由带正电荷的粒子组成,这种粒子被称为α粒子。人们推测,这种现象可以用原子吐出一块带正电荷的面团来解释。为了检验这一假设以及整个葡萄干布丁模型,卢瑟福决定用一组原子发射出的α粒子去打另一组原子,看看会发生什么。换句话说,他想用α粒子来探测原子。
1700926366
[
上一页 ]
[ :1.700926317e+09 ]
[
下一页 ]